화학공학소재연구정보센터
Current Microbiology, Vol.74, No.4, 491-498, 2017
Enhanced Biotransformation of Triclocarban by Ochrobactrum sp TCC-1 Under Anoxic Nitrate Respiration Conditions
Antimicrobial triclocarban (3,4,4'-trichlorocarbanilide, TCC) is frequently detected in soils and sediments for the widely reclaim of sewage sludge or biosolid in recent decades. This resulted from a weak removal of TCC during wastewater treatment, and most of it adsorbed onto sewage sludge. As the toxicity and persistence of TCC in the environment, the elimination of TCC from the source of output is of great importance, particularly in anoxic process. In this study, the biotransformation of TCC by a newly isolated TCC-degrading strain Ochrobactrum sp. TCC-1 under anoxic conditions was investigated. By testing different carbon nitrogen ratios (C/N), it showed that nitrate could support the growth of strain TCC-1 and enhance the hydrolysis of TCC to more biodegradable chloroanilines, especially with a higher C/N of 10 and under anaerobic conditions. In wastewater sewage sludge, strain TCC-1 colonized and maintained the TCC-hydrolyzing activity under the nitrate respiration mode. These results would lay a basic foundation for the potential bioremediation of TCC-contaminated anoxic sites with TCC-degrading strain.