화학공학소재연구정보센터
Current Applied Physics, Vol.17, No.4, 501-506, 2017
Solvothermal synthesis of high-performance Ni-Co layered double hydroxide nanofoam electrode for electrochemical energy storage
A nanofoam nickel cobalt layered double hydroxide (NiCo(OH)(2)) electrode film is fabricated on a stainless-steel substrate with the use of a simple one-step solvothermal process. The nanofoam NiCo(OH)(2) electrode exhibits a high specific capacitance of 2710.2 Fig at a current density.of 9.1 A/g, and a good capacity retention of similar to 70% after 2000 charge-discharge cycles at a high current density of 31.8 A/g. An energy density of 60.23 Wh/kg is obtained at a power density of 1.8 kW/kg. The excellent electrochemical energy storage performance of the NiCo(OH)(2) electrode is due to the synergetic effect of a significantly improved ionic diffusion and an effective charge transfer, which is linked to a well-dispersed interconnected nanofoam morphology and binder-free direct contact with the current collector. (C) 2017 Elsevier B.V. All rights reserved.