화학공학소재연구정보센터
Applied Surface Science, Vol.402, 47-52, 2017
Three-dimensional macroporous carbon/hierarchical CO3O4 nanoclusters for nonenzymatic electrochemical glucose sensor
A novel supporting material named as three-dimensional kenaf stem-derived carbon (3D-KSCs) was used to load hierarchical Co3O4 nanoclusters for electrochemical sensing glucose. The 3D-KSCs/hierarchical Co3O4 nanoclusters were constructed by two steps. Los of acicular precursor nanoclusters firstly grew on the channels of 3D-KSCs densely by hydrothermal method and then the as-prepared 3D-KSCs/hierarchical Co3O4 nanoclusters was obtained by thermal pyrolysis of the 3D-KSCs/precursors nanocomposites at 400 degrees C. The 3D macroporous configuration of 3D-KSCs resulted in lots of hierarchical Co3O4 nanoclusters arrayed on the surface of 3D-KSCs owing to its large enough specific surface area, which effectively avoided their aggregations and improved the stability of nanocomposites. The obtained 3D-KSCs/hierarchical Co3O4 nanoclusters showed a large number of needle-shaped and layered Co3O4 nanoclusters uniformly grew on the macropore's walls of 3D-KSC. Due to its unique nanostructures, the 3D-KSCs/hierarchical Co3O4 nanoclusters integrated electrode showed superior performance for nonenzymatic electrochemical glucose sensing, showing wide linear range (0.088-7.0 mM) and low detection limit of 26 mu M. It might be a new strategy to prepare nanostructures on 3D-KSC for future applications. (C) 2017 Elsevier B.V. All rights reserved.