Applied Energy, Vol.192, 543-550, 2017
Low pH, high salinity: Too much for microbial fuel cells?
Twelve single chambered, air-cathode Tubular Microbial Fuel Cells (TMFCs) have been filled up with fruit and vegetable residues. The anodes were realized by means of a carbon fiber brush, while the cathodes were realized through a graphite-based porous ceramic disk with Nafion membranes (117 Dupont). The performances in terms of polarization curves and power production were assessed according to different operating conditions: percentage of solid substrate water dilution, adoption of freshwater and a 35 mg/L NaCI water solution and, finally, the effect of an initial potentiostatic growth. All TMFCs operated at low pH (pH = 3.0 +/- 0.5), as no pH amendment was carried out. Despite the harsh environmental conditions, our TMFCs showed a Power Density (PD) ranging from 20 to 55 mW/m(2) kg(waste) and a maximum CD of 20 mA/m(2) kg(waste), referred to the cathodic surface. COD removal after a 28-day period was about 45%. The remarkably low pH values as well as the fouling of Nafion membrane very likely limited TMFC performances. However, a scale-up estimation of our reactors provides interesting values in terms of power production, compared to actual anaerobic digestion plants. These results encourage further studies to characterize the graphite-based porous ceramic cathodes and to optimize the global TMFC performances, as they may provide a valid and sustainable alternative to anaerobic digestion technologies. (C) 2016 Elsevier Ltd. All rights reserved.
Keywords:Microbial fuel cell;Waste to energy;Power generation;Direct conversion of solid organic waste