- Previous Article
- Next Article
- Table of Contents
Applied Energy, Vol.190, 1-17, 2017
Assessing thermal comfort and energy efficiency in buildings by statistical quality control for autocorrelated data
In this paper, a case study of performing a reliable statistical procedure to evaluate the quality of HVAC systems in buildings using data retrieved from an ad hoc big data web energy platform is presented. The proposed methodology based on statistical quality control (SQC) is used to analyze the real state of thermal comfort and energy efficiency of the offices of the company FRIDAMA (Spain) in a reliable way. Non conformities or alarms, and the actual assignable causes of these out of control states are detected. The capability to meet specification requirements is also analyzed. Tools and packages implemented in the open-source R software are employed to apply the different procedures. First, this study proposes to fit ARIMA time series models to CTQ variables. Then, the application of Shewhart and EWMA control charts to the time series residuals is proposed to control and monitor thermal comfort and energy consumption in buildings. Once thermal comfort and consumption variability are estimated, the implementation of capability indexes for autocorrelated Variables is proposed to calculate the degree to which standards specifications are met. According with case study results, the proposed methodology has detected real anomalies in HVAC installation, helping to detect assignable causes and to make appropriate decisions. One of the goals is to perform and describe step by step this statistical procedure in order to be replicated by practitioners in a better way. (C) 2016 Elsevier Ltd. All rights reserved.
Keywords:Thermal comfort;Energy efficiency;Intelligent energy platform;Big data;Statistical quality control;Time series