화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.34, No.5, 1319-1327, May, 2017
Nanoparticle deposition in transient gaseous microchannel flow considering hindered motion and rarefaction effect
E-mail:
Interaction between wall and flow becomes more important when the scale of a channel decreases. We investigated two effects of wall presence for the transport of nanoparticle in a microchannel, which are the rarefaction effect up to early transient regime and hindered motion of nanoparticles. Lattice Boltzmann method coupled with Lagrangian nanoparticle tracking was used for modeling. Series of numerical simulation for various nanoparticle diameters, channel geometries, fluid velocities, and Knudsen numbers were performed. Some important features on nanoparticle transport such as capture efficiency, deposition velocity and deposition location were discussed. Using suitable dimensionless parameters, correlations for capture efficiency and deposition velocity were obtained. Considering hindered motion leads to significant decrease in the capture efficiency and deposition velocity. Results show that the effect of rarefaction on deposition is mostly because of varying the force acting on nanoparticles not due to slip velocity of fluid field near boundaries.
  1. Rahimi-Gorji OM, Pourmehran O, Gorji-Bandpy M, Gorji TB, J. Mol. Liq., 209, 121 (2015)
  2. Pourmehran O, Rahimi-Gorji M, Gorji-Bandpy M, Gorji TB, J. Magn. Magn. Mater., 393, 380 (2015)
  3. Pourmehran O, Gorji TB, Gorji-Bandpy M, Biomech. Model. Mechanobiol., 15, 1355 (2016)
  4. Tu J, Inthavong K, Ahmadi G, Computational fluid and particle dynamics in the human respiratory system, 1st Ed., Springer Science & Business Media (2012).
  5. Hung LH, Lee AP, J. Med. Biol. Eng., 27(1), 1 (2007)
  6. Kockmann N, Dreher S, Engler M, Woias P, Chem. Eng. J., 135, S121 (2008)
  7. Marshall JS, J. Aerosol Sci., 38(3), 333 (2007)
  8. Yang RJ, Hou JH, Wang YN, Lin CH, Fu LM, Biomicrofluidics, 6(3), 34110 (2012)
  9. Ansari V, Goharrizi AS, Jafari S, Abolpour B, Comput. Fluids, 108, 170 (2015)
  10. Basagaoglu H, Allwein S, Succi S, Dixon H, Carrola TJ, Stothoff S, Microfluid. Nanofluid., 15(6), 785 (2013)
  11. Afshar H, Shams M, Nainian SMM, Ahmadi G, Int. Commun. Heat Mass Transf., 36, 1060 (2009)
  12. Andarwa S, Tabrizi HB, Ahmadi G, Particuology, 16, 84 (2014)
  13. Li A, Ahmadi G, Aerosol Sci. Technol., 16(4), 209 (1992)
  14. Michaelides EE, J. Fluids Eng., 138(5), 51303 (2016)
  15. Katelhon E, Sokolov SV, Compton RG, Sens. Actuators B-Chem., 234, 420 (2016)
  16. Adamczyk Z, Van de Ven TGM, J. Colloid Interface Sci., 80(2), 340 (1981)
  17. Elimelech M, Gregory J, Jia X, Particle deposition and aggregation: measurement, modelling and simulation, Butterworth-Heinemann (2013).
  18. Park JD, Myung JS, Ahn KH, Korean J. Chem. Eng., 33(11), 3069 (2016)
  19. Kandlikar S, Garimella S, Li D, Colin S, King MR, Heat transfer and fluid flow in minichannels and microchannels, Elsevier (2005).
  20. Yue XJ, Wu ZH, Ba YS, Lu YJ, Zhu ZP, Ba CD, Int. J. Mod. Phys. C, 26(04), 155003 (2015)
  21. Wang H, Zhao H, Guo Z, He Y, Zheng C, J. Comp. Phys., 239, 57 (2013)
  22. Zou Q, He X, Phys. Fluids, 9(6), 1591 (1997)
  23. Succi S, Phys. Rev. Lett., 89(6), 064502 (2002)
  24. Goldman AJ, Cox RG, Brenner H, Chem. Eng. Sci., 22(4), 637 (1967)
  25. Goldman AJ, Cox RG, Brenner H, Chem. Eng. Sci., 22(4), 653 (1967)
  26. Bevan MA, Prieve DC, J. Chem. Phys., 113(3), 1228 (2000)
  27. Huang P, Guasto JS, Breuer KS, J. Fluid Mech., 637, 241 (2009)
  28. Lin B, Yu J, Rice SA, Phys. Rev. E, 62(3), 3909 (2000)
  29. Kim JH, Mulholland GW, Kukuck SR, Pui DY, J. Res. Natl. Inst. Stan., 110(1), 31 (2005)
  30. Saffman PGT, J. Fluid Mech., 22(2), 385 (1965)
  31. Sommerfeld M, Int. J. Multiph. Flow, 29(4), 675 (2003)
  32. Jung S, Phares DJ, Srinivasa AR, Int. J. Multiph. Flow, 49, 1 (2013)