화학공학소재연구정보센터
Macromolecular Research, Vol.25, No.3, 201-205, March, 2017
Block Copolymer-Based Nanocomposites with Exotic Self-Assembled Structures Induced by a Magnetic Field
E-mail:
Structural control of polymer nanocomposites is important for their applications in organic semiconductors, lithographic nanopatterning, separation membranes, and nanofabrication templates. However, manufacturing nanocomposite materials with novel structures in a highly efficient yet precise manner remains a great challenge. To create nanocomposite structures, we combined self-assembly processing of block copolymer (BCP)-metal complex nanocomposites with an applied magnetic field. Here, we describe in detail the mechanism of magnetic alignment of block copolymers doped with metal complexes; specifically, we investigated the effect of the applied magnetic field on the phase behavior of the assembled block copolymer-metal complex nanocomposites with various molecular weights and with different molecular structures. We show that our combination of self-assembly processing and application of a magnetic field yielded lamellar structures of alternating multilayers with different layer thicknesses. This self-assembled structure is not included in phase diagrams of BCPs. The influence of the block copolymers’ molecular structures on the nanocomposites’ phase transformation behavior is also discussed. Our results provide a route to manufacturing nanocomposite materials in a highly efficient yet precise manner, which could lead to improvement in the material properties of nanocomposites.
  1. Krasteva N, Bes-nard I, Guse B, Bauer RE, Mullen K, Yasuda A, Vossmeyer T, Nano Lett., 2, 551 (2002)
  2. Trindade T, O’Brien P, Pickett NL, Chem. Mater., 13, 3843 (2001)
  3. Galow TH, Drechsler U, Hanson JA, Rotello VM, Chem. Commun., 10, 1076 (2002)
  4. Cuello NI, Elias VR, Torres CER, Crivello ME, Oliva MI, Eimer GA, Microporous Mesoporous Mater., 203, 106 (2015)
  5. Ranjbar B, Nazockdast H, J. Appl. Polym. Sci., 132, 41753 (2015)
  6. Salehi-Khojin A, Hosseini MR, Jalili N, Compos. Sci. Technol., 69, 545 (2009)
  7. Rivoirard S, J. Min. Met. Mater. Soc., 65, 7901 (2013)
  8. Wang K, Zhang Q, Fu Q, Acta Polym. Sin., 5, 586 (2013)
  9. Fujihara T, Cho HB, Kanno M, Nakayama T, Suzuki T, Jiang W, Suematsu H, Niihara K, Jpn. J. Appl. Phys., 53, 02BD12 (2014)
  10. Park W, Emoto K, Jin YH, Shimizu A, Tamma VA, Zhang W, Opt. Mater. Exp., 3, 205 (2013)
  11. Xu KL, Guo RH, Dong BJ, Yan LT, Soft Matter, 8, 9581 (2012)
  12. Jang YJ, Kim DH, Chem.-Eur. J., 17, 540 (2011)
  13. Xia Y, Zhang WK, Huang H, Gan YP, Tian J, Tao XY, J. Power Sources, 196(13), 5651 (2011)
  14. Sanchez-Gaytan BL, Li S, Kamps AC, Hickey RJ, Clarke N, Fryd M, Wayland BB, Park SJ, J. Phys. Chem. C, 115, 7836 (2011)
  15. Wakayama H, Yonekura H, Kawai Y, ACS Macro Lett., 2, 284 (2013)
  16. Wakayama H, Yonekura H, Mater. Lett., 171, 268 (2016)
  17. Sadron C, Allot B, Makromol. Chem., 164, 301 (1973)
  18. Ishizu K, Bessho K, Fukutomi T, Kakurai T, Makromol. Chem. Rapid Commun., 4, 163 (1983)
  19. Maqbool Q, Reddy A, Goswami MS, Konar S, Srivastava A, J. Mater. Chem. A, 2, 2609 (2014)
  20. Elmaci A, Hacaloglu J, Kayran C, Sakellariou G, Hadjichristidis N, Polym. Degrad. Stabil., 94, 2023 (2009)