Materials Research Bulletin, Vol.88, 281-290, 2017
Sol-gel synthesis of less expensive mesoporous titania-tin dioxide systems: Investigation of the influence of tin dioxide on the phase structure, morphology and optical properties
Herein the influence of SnO2 on the optical, morphology and phase structure of mesoporous TiO2-SnO2 composites was examined. Composites with Sn/Ti ratio ranging from 0.1 to 5 were synthesized using less expensive sources in the absence of additives. The obtained samples were examined by XRD, HRTEM, SEM-EDAX, XPS, UV-vis DRS, XRF, TGA and nitrogen gas physisorption studies analyses. The physicochemical properties of the TiO2-SnO2 systems depended mainly on the Sn-to-Ti ratio, calcination temperature and the interaction between Se4+ and Ti4+. XRD results depicted that samples with Sn/Ti = 0.1 calcined at <= 600 degrees C exhibited pure anatase TiO2 crystals and the tendency of increasing Sn4+ content facilitated a phase transformation to attain rutile structure. Optical analyses of the samples showed that the absorption of the samples can be extended into the visible region. This study provides a systematic and economical method for large-scale production of TiO2 based composites with desirable properties for various applications. (C) 2017 Elsevier Ltd. All rights reserved.