화학공학소재연구정보센터
Journal of the Electrochemical Society, Vol.163, No.14, F1480-F1488, 2016
Hydrogen Diffusivity and Electrolyte Permeability of the Zirfon PERL Separator for AlkalineWater Electrolysis
The hydrogen and oxygen evolved during alkaline water electrolysis with liquid KOH electrolytes are typically separated using porous separators such as Zirfon PERL (Agfa), a commercially available composite of zirconium oxide and polysulfone. In this study, the hydrogen diffusivity (driven by concentration differences) and electrolyte permeability (driven by differential pressures) of the Zirfon PERL separator were characterized as a function of the temperature and molarity of the KOH filling. The diffusivity of hydrogen in the separator was found to be approximately 16% of that of the electrolyte filling inside its pores. With respect to water electrolysis conditions, the extent of hydrogen cross-permeation caused by the convection of the cross-permeating electrolyte was estimated and compared to that caused by diffusion. On the basis of the physically characterized mechanisms, smaller pores were predicted to reduce the differential pressure driven gas cross-permeation. (C) The Author(s) 2016. Published by ECS. All rights reserved.