화학공학소재연구정보센터
Journal of the Electrochemical Society, Vol.163, No.14, A2911-A2918, 2016
Probing the Electrode-Electrolyte Interface in Cycled LiNi0.5Mn1.5O4 by XPS Using Mg and Synchrotron X-rays
X-ray photoelectron spectroscopy (XPS) was used to investigate the surface chemistry of high voltage spinel, LiNi0.5Mn1.5O4 (LNMO) positive electrodes cycled 5 and 10 times in Li-cells with 1 M LiPF6 in (3: 7) EC:DMC. The XPS spectra were collected using conventional Mg X-rays with energy of 1253.6 eV as well as synchrotron X-rays with energies of 2493.6 and 3498.4 eV in order to examine the depth distribution of various surface chemical species induced during cycling. The XPS spectra revealed a 5 - 10 nm surface layer of organic and LixPFyOz-type species formed as result of electrolyte decomposition, and a comparatively thinner layer composed of transition metal fluorides and LiF. These results suggest that electrolyte decomposition is a major contributor to parasitic reactions in LNMO battery electrochemistry. Limiting electrolyte decomposition with the use of solvents with wide electrochemical stability windows thus comprises a promising strategy for ensuring the practical feasibility of high voltage spinel materials in future Li-ion systems. (C) The Author(s) 2016. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. All rights reserved.