화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.120, No.51, 13076-13085, 2016
Weak Selectivity Predicted for Modeled Bundles of Viral Channel-Forming Protein E5 of Human Papillomavirus-16
Protein E5 is a polytopic 83 amino acid membrane protein with three transmembrane domains (TMDs), encoded by high-risk human papillomavirus-16 (HPV-16). HPV-16 is found to be the causative agent for cervical cancer. Protein ES, among other proteins (e.g., E6, E7), is expressed at an "early" (E) stage when the cell turns malignant. It has been experimentally found that E5 forms hexameric assemblies, which show the characteristics of the class of so-called channel-forming proteins by rendering lipid membranes permeable to ions and small molecules. Protein ES is used to achieve structural models of the protein in assembled bundles using a force field-based docking approach. Extended molecular dynamics simulations of selected bundles in fully hydrated lipid bilayers suggest the second TMD to be pore-lining, allowing for water columns to exist within the lumen of the pore. Full correlation analysis indicates asymmetric dynamics within the monomers of the bundle. Potential of mean force calculations of a snapshot structure of the putative open pore of the protein bundle propose low selectivity.