Journal of Materials Science, Vol.52, No.6, 3457-3466, 2017
Uniformly dispersed carbon-supported bimetallic ruthenium-platinum electrocatalysts for the methanol oxidation reaction
Reducing the Pt-based electrocatalysts to sub-nanometer sizes is an effective way to achieve high utilization of noble metals. Herein, we report a successive route to synthesize carbon-supported bimetallic ruthenium-platinum electrocatalysts (Ru-Pt/C) with uniform dispersion and fine sizes. In this strategy, carbon-supported Ru nanoparticles (Ru/C) with a mean size of 1.4 nm are firstly prepared in a mixture of ethylene glycol and water, and the Pt precursors are then reduced in the presence of pre-formed Ru/C. The average diameter of the bimetallic Ru-Pt particles on carbon supports is 1.9 nm, which corresponds to one to two Pt layers deposited on the surface of Ru seeds. The as-prepared bimetallic Ru-Pt/C electrocatalysts are analyzed by the CO stripping voltammetry, a diagnostic electrochemical tool. Compared with the commercial PtRu/C catalyst and the control PtRu/C prepared by a conventional co-reduction method, the bimetallic Ru-Pt/C has higher electrochemical surface area (92.5 m(2) g(-1)) and mass activity (483 A g(-1)) for methanol oxidation reaction. The strategy reported in this study is effective to produce fine bimetallic Ru-Pt particles (less than 2.0 nm) with uniform dispersion and high activity.