화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.491, 390-400, 2017
Surface modification of TiO2 nanoparticles with biodegradable nanocellolose and synthesis of novel polyimide/cellulose/TiO2 membrane
In this paper, novel polyimideicellulose/TiO2 bionanocomposites (PI/BNCs) were prepared via a simple and inexpensive ultrasonic irradiation process. PI was synthesized by direct polycondensation reaction of novel monomer dianhydride with 4-(2-(4-aminopheny1)-1,1,1,3,3,3-hexafluoropropan-2-y)benzena mine. Due to the high surface energy and tendency for agglomeration the surface of nanoparticles was modified with cellulose. PI/BNCs containing 5, 10, and 15% of cellulose/TiO2 (BNCs) were successfully fabricated through ultrasonic irradiation technique. The obtained PI/BNCs were characterized by Fourier transform-infrared (FT-IR) spectroscopy, thermogravimetry analysis, X-ray powder diffraction, field emission-scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). Thermogravimetric analysis data indicated an increase thermal stability of the PI/BNC polymers in compared to the pure polymer. From TEM image of PI/BNCs it can be found that the surface modified TiO2 with diametric size of less than 50 nm, uniformly dispersed in the obtained PI matrix. The results obtained from gas permeation experiments with a constant pressure setup indicated that adding cellulose/TiO2 to the polymeric membrane structure increased the permeability of the membranes. (C) 2016 The Author. Published by Elsevier Inc.