Journal of Colloid and Interface Science, Vol.488, 92-108, 2017
Synergistic effect of chemo-photothermal for breast cancer therapy using folic acid (FA) modified zinc oxide nanosheet
Modern therapies for malignant breast cancer in clinics are not efficacious and often result in deprived patient compliance owing to squat therapeutic effectiveness and strong systemic side effects. In order to overcome this, we combined chemo-photothermal targeted therapy of breast cancer within one novel multifunctional drug delivery system. Folic Acid-functionalized polyethylene glycol coated Zinc Oxide nanosheet (FA-PEG-ZnO NS), was successfully synthesized, characterized and introduced to the drug delivery field for the first time. A doxorubicin (DOX)-loaded FA-PEG-ZnO NS based system (DOX-FAPEG-ZnO NS) showed stimulative effect of heat, pH responsive and sustained drug release properties. Cytotoxicity experiments confirmed that combined therapy mediated the maximum rate of death in breast cancer cells compared to that of single chemotherapy or photothermal therapy. In vivo toxicity evaluation showed that the DOX-FA-PEG-ZnO NS contains minimum systemic toxicity in the mice model system. The findings of the present study provided an ideal drug delivery system for breast cancer therapy due to the advanced chemo-photothermal synergistic targeted therapy and good drug release properties of DOX-FA-PEG-ZnO NS, which could effectively avoid frequent and invasive dosing and improve patient compliance. Thus, functionalized-ZnO NS could be used as a novel nanomaterial for selective chemo-photothermal therapy. (C) 2016 Elsevier Inc. All rights reserved.