Desalination, Vol.406, 88-97, 2017
Hybrid precipitation-nanofiltration treatment of effluent pond water from phosphoric acid industry
Wastewater generated from phosphoric acid industry poses a real environmental challenge. This water contains valuable components the utilization of which can contribute to the conservation of natural resources. Water sample from an effluent pond of a phosphoric acid plant was collected and characterized for its physical and chemical properties. The collected samples were subjected to a hybrid process of chemical precipitation followed by nanofiltration. Both sulphate and fluoride ions were separated by precipitation using Ca(OH)(2). Silicon exhibited complex behaviour during the precipitation stage. The observed flux using the different tested membranes (NF90, NF270, and BW30) indicated the success of the pre-treatment method in preventing heavy fouling. Very high rejections were obtained using the NF90 and BW30 membranes and, generally, the rejection increased with pressure. As expected, higher flux and lower rejections were observed with NF270 for Si and H3PO4 species. At a pressure of 20 bar the rejection increased with feed concentration which can be attributed to Donnan effects. It is concluded that NF270 could be potentially applied to separate PA from the rest of the species present in water. However, the main challenge is the low rejection of Si. (C) 2016 Elsevier B.V. All rights reserved.
Keywords:Phosphoric add;Flourosilicic acid;Industrial wastewater;Chemical precipitation;Nanofiltration;Hybrid water treatment process