화학공학소재연구정보센터
Chemical Reviews, Vol.117, No.2, 712-757, 2017
Nanoscale Strategies for Light Harvesting
Recent advances and the current status of challenging light-harvesting nanomaterials, such as semiconducting quantum dots (QDs), metal nanoparticles, semiconductor-metal heterostructures, pi-conjugated semiconductor nanoparticles, organic-inorganic heterostructures, and porphyrin-based nanostructures, have been highlighted in this review. The significance of size-, shape-, and composition-dependent exciton decay dynamics and photoinduced energy transfer of QDs is addressed. A fundamental knowledge of these photophysical processes is crucial for the development of efficient light-harvesting systems, like photocatalytic and photovoltaic ones. Again, we have pointed out the impact of the metal-nanoparticle-based surface energy transfer process for developing light-harvesting systems. On the other hand, metal- semiconductor hybrid nanostructures are found to be very promising for photonic applications due to their exciton- plasmon interactions. Potential light-harvesting systems based on dye-doped pi-conjugated semiconductor polymer nanoparticles and self-assembled structures of pi-conjugated polymer are highlighted. We also discuss the significance of porphyrin-based nanostructures for potential light-harvesting systems. Finally, the future perspective of this research field is given.