Biotechnology Letters, Vol.38, No.12, 1991-2006, 2016
CRISPR/Cas9: a promising way to exploit genetic variation in plants
Creation of variation in existing gene pool of crop plants is the foremost requirement in crop improvement programmes. Genome editing is a tool to produce knock out of target genes either by introduction of insertion or by deletion that disrupts the function of a specific gene. The CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) system is the most recent addition to the toolbox of sequence-specific nucleases that includes ZFNs and TALENs. The CRISPR/Cas9 system allows targeted cleavage of genomic DNA guided by a small noncoding RNA, resulting in gene modifications by both non-homologous end joining and homology-directed repair mechanisms. Here, we present an overview of mechanisms of CRISPR, its potential roles in creating variation in germplasm and applications of this novel interference pathway in crop improvement. The availability of the CRISPR/Cas9 system holds promise in facilitating both forward and reverse genetics and will enhance research in crops that lack genetic resources.