화학공학소재연구정보센터
Biomacromolecules, Vol.17, No.12, 3862-3871, 2016
Injectable Polypeptide Hydrogels with Tunable Microenvironment for 3D Spreading and Chondrogenic Differentiation of Bone-Marrow-Derived Mesenchymal Stem Cells
Bone-marrow-derived mesenchymal stem cells (BMSCs) possess vast potential for tissue engineering and regenerative medicine. In this study, an injectable hydrogel comprising poly(L-glutamic acid)-graft-tyramine (PLG-g-TA) with tunable microenvironment was developed via enzyme-catalyzed cross-linking and used as an artificial extracellular matrix (ECM) to explore the behaviors of BMSCs during three-dimensional (3D) culture. It was found that the mechanical property, porous structure as well as degradation process of the hydrogels could be tuned by changing the copolymer concentration. The PLG-g-TA hydrogels showed good cytocompatibility in vitro. After being subcutaneously injected into the back of rats, the hydrogels degraded gradually within 8 weeks and exhibited good biocompatibility in vivo. BMSCs were then encapsulated in the polypeptide-based hydrogels with different copolymer concentration to investigate the influence of 3D matrix microenvironment on stem cell behaviors. It is intriguing to note that the BMSCs within the 2% hydrogel showed a well-spread morphology after 24 h and a higher proliferation rate during 7 days of culture, in contrast to a rounded morphology and lower proliferation rate of BMSCs in the 4% hydrogel. Furthermore, the hydrogels with different microenvironment also regulated the matrix biosynthesis and the gene expression of BMSCs. After incubation in the 2% hydrogel for 4 weeks, the BMSCs produced more type II collagen and expressed higher amounts of chondrogenic markers, compared to the cells in the 4% hydrogel. Therefore, the PLG-g-TA hydrogels with tunable microenvironment may serve as an efficient 3D platform for guiding the lineage specification of BMSCs.