화학공학소재연구정보센터
Applied Surface Science, Vol.393, 225-233, 2017
Equilibrium CO2 adsorption on zeolite 13X prepared from natural clays
Zeolite 13X was successfully synthesized by hydrothermal treatment using natural clays extracted from Iranian resources. The preliminary natural materials and the final zeolite 13X samples were characterized by X-ray Diffraction (XRD), Fourier-Transfer Infrared (FTIR) spectroscopy, Scanning Electron Microscopy (SEM) and N-2 adsorption-desorption isotherm. The effects of various factors such as NaOH addition amount and aging time on the crystalline products were studied during the synthesis process. The optimum conditions related to the synthesis of zeolite 13X were set. Accordingly, NaOH concentration was equal to 4 M. It was further crystallized at 65 degrees C for 72 h after its homogenization by agitation at room temperature for 120 h. In this study, the zeolite 13X prepared from natural kaolin (13X-K) showed a high BET surface area of 591 m(2)/g with higher micropore volume (0.250 cm(3)/g) than other materials. Adsorption equilibrium isotherms of CO2 were investigated using a static, volumetric method. In addition, pressures for the pure component data extended up to 20 bar. The adsorption equilibrium data of CO2 was fitted to Langmuir, Freundlich, Lamgmuir-Freundlich, Toth and BET isotherm models. It was found that the Langmuir-Freundlich model was more suitable than other models for CO2 description. The results showed that the synthetic zeolite has higher equilibrium selectivity for CO2. Also, the CO2 uptake by zeolite 13X-K was equal to 6.9 mmol/g. (C) 2016 Elsevier B.V. All rights reserved.