화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.47, 272-280, March, 2017
Biosurfactant production by the hydrocarbon-degrading bacteria (HDB) Serratia marcescens: Optimization using central composite design (CCD)
E-mail:
Based on the nutritional and physiological requirements of a native hydrocarbon-degrading bacterium (HDB), Serratia marcescens, an investigation on the potential biosurfactant production by this bacterial species was conducted. The effects of different carbon sources, nitrogen sources, salinity, pH, temperature, and agitation speeds were extensively studied. The optimal conditions of biosurfactant production and surface tension were determined using central composite design (CCD) by setting glycerol, peptone and ammonium sulphate (NH4)2SO4 in a range of 3-7%, 2-6 g/L and 3-7 g/L, respectively. The results showed that biosurfactant was highly produced at pH 8, a temperature of 30 °C, a salinity of 1% and a speed of 200 rpm after 5 days (120 h) of incubation. The optimal conditions were obtained at 5% glycerol, 4 g/L peptone and 5 g/L (NH4)2SO4 with a maximum biosurfactant production of 1.42 g/L and a minimum surface tension of 28.4 mN/m. Thus, the HDB S. marcescens shows good potential as a biosurfactant-producing bacterium to be used in any environmental application and as an alternative to chemical surfactants.
  1. Salihu A, Abdulkadir I, Almustaph MN, Microbiol. Mol. Biol. Rev., 3, 111 (2009)
  2. Chandran P, Das N, Int. J. Eng. Sci. Technol., 2, 6942 (2010)
  3. He Z, Liu G, Yang X, Liu W, J. Ind. Eng. Chem., 37, 107 (2016)
  4. Lee SM, Lee JY, Yu HP, Lim JC, J. Ind. Eng. Chem., 38, 157 (2016)
  5. Sakthipriya N, Doble M, Sangwai JS, J. Ind. Eng. Chem., 31, 100 (2015)
  6. Rahman KSM, Gakpe E, Biotechnology, 7, 360 (2008)
  7. Kiran GS, Thomas TA, Selvin J, Sabarathnam B, Lipton AP, Bioresour. Technol., 101(7), 2389 (2010)
  8. Lotfabad TB, Shourian M, Roostaazad R, Najafabadi AR, Adelzadeha MR, Noghabi KA, Colloids Surf. B: Biointerfaces, 69, 183 (2009)
  9. Yin H, Qiang J, Jia Y, Ye JS, Peng H, Qin HM, Zhang N, He BY, Process Biochem., 44(3), 302 (2009)
  10. Okoliegbe IN, Agarry OO, Sch. J. Biotechnol., 1, 15 (2012)
  11. Nishanthi R, Kumaran S, Palani P, Chellaram C, Anand TP, Kannan V, J. Ecobiotechnol., 2, 47 (2010)
  12. Al-Mulla EFA, Thesis Master, University of Baghdad, Iraq, 2010.
  13. Ibrahim ML, Ijah U, Manga S, Bilbis L, Umar S, Int. Biodeterior. Biodegrad., 81, 28 (2013)
  14. Almansoory AF, Idris M, Abdullah SRS, Anuar N, Adv. Environ. Biol., 8, 639 (2014)
  15. Anandaraj B, Thivakaran P, J. Biosci. Technol., 1, 120 (2010)
  16. Aparna A, Srinikethan G, Hedge S, Environ. Sci. Technol., 6, 71 (2011)
  17. Bidlan R, Deepthi N, Manonmani H, Res. J. Microbiol., 2, 705 (2007)
  18. Najafi AR, Rahimpour MR, Jahanmiri AH, Roostaazad R, Arabian D, Ghobadi Z, Chem. Eng. J., 163(3), 188 (2010)
  19. Pruthi V, Cameotra SS, World J. Microbiol. Biotechnol., 13, 137 (1997)
  20. Abu-Ruwaida AS, Banat IM, Haditirto S, Salem A, Kadri M, Acta Biotechnol., 11, 315 (1991)
  21. Anyanwu CU, Obi SKC, Okolo BN, J. Appl. Sci. Res., 7, 79 (2011)
  22. Tanaka Y, Yuosa J, Baba M, Tanikawa T, Nakagawa Y, Matsuyama T, Microbes Environ., 19, 236 (2004)
  23. Bhardwaj G, Cameotra SS, Kumar H, J. Pet. Environ. Biotechnol., 4, 1 (2013)
  24. Korbahti BK, Aktas N, Tanyolac A, J. Hazard. Mater., 148(1-2), 83 (2007)
  25. Kiran GS, Hema TA, Gandhimathi R, Selvin J, Colloids Surf. B: Biointerfaces, 73, 250 (2009)
  26. de Lima CJB, Ribeiro EJ, Servulo EFC, Resende MM, Cardoso VL, Appl. Biochem. Biotechnol., 152(1), 156 (2009)
  27. Roldan-Carrillo T, Martinez-Garcia X, Zapata-Penasco I, Castorena-Cortes G, Reyes-Avila J, Mayol-Castillo M, Olguin-Lora P, Colloids Surf. B: Biointerfaces, 86, 384 (2011)
  28. Campos JM, Stamford TLM, Sarubbo LA, Appl. Biochem. Biotechnol., 172(6), 3234 (2014)
  29. Jain RM, Mody K, Mishra A, Jha B, Carbohydr. Polym., 87, 2320 (2012)