Journal of Industrial and Engineering Chemistry, Vol.47, 297-302, March, 2017
Scale up of xylitol production from sugarcane bagasse hemicellulosic hydrolysate by Candida guilliermondii FTI 20037
E-mail:
In this study, volumetric oxygen mass transfer coefficient (kLa) was selected as a criterion for facilitating the scale up of xylitol production by Candida guilliermondii at the bench and pilot-scale level. A kLa value of 16 h-1 was applied in reactors with volumetric capacity of 2.4 L, 18 L and 125 L. Fermentation was successfully scaled-up from the bench to pilot-scale level with all experiments demonstrating a minimum of 60% xylose to xylitol conversion efficiency. Under all evaluated conditions glycerol and ethanol were also produced as by-products of xylose metabolism. Only minor differences were observed in the fermentation profile when reactor volumes ranging from 2.4 L to 125 L were used for experimentation purposes, reaching, at pilot scale, yield and volumetric productivity of 0.55 g g-1 and 0.31 g L-1 h-1, respectively, with maximum specific growth rate of 0.26 h-1. This demonstrates and reinforces the feasibility of using kLa as scale up criterion. The use of this parameter allowed precise reproduction of results obtained at bench bioreactor level to a larger scale; this is extremely crucial and important information considering that the aim of the proposed biotechnological process is to reach the level required for the industrial viability.
Keywords:Sugarcane bagasse;Hemicellulosic hydrolysate;Xylitol;Scale up;Volumetric oxygen mass transfer coefficient
- Yoon SH, van Heiningen A, J. Ind. Eng. Chem., 16(1), 74 (2010)
- Slininger PJ, Dien BS, Lomont JM, Bothast RJ, Ladisch MR, Okos MR, Biotechnol. Bioeng., 111(8), 1532 (2014)
- Girio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasik R, Bioresour. Technol., 101(13), 4775 (2010)
- Rocha GJM, Nascimento VM, Goncalves AR, Silva VFN, Martin C, Ind. Crop. Prod., 64, 52 (2015)
- Chandel AK, Antunes FFA, Arruda PV, Milessi TSS, Silva SS, Felipe MGA, in: Silva SS, Chandel AK (Eds.), D-Xylitol: Fermentative Production, Application and Commercialization, Springer-Verlag, Berlin, Heidelberg, 2012 p. 39.
- Werpy T, Peterson G, Top Value Added Chemicals From Biomass, Vol. 1-Results of Screening for Potential Candidates From Sugars and Synthesis Gas, first ed., USDOE, Washington, DC, 2004.
- Mussatto SI, in: Silva SS, Chandel AK (Eds.), D-Xylitol: Fermentative Production, Application and Commercialization, Springer-Verlag, Berlin, Heidelberg, 2012 p. 309.
- Silva AF, Ferreira AS, Silva SS, Raposo NRB, in: Silva SS, Chandel AK (Eds.), D-Xylitol: Fermentative Production, Application and Commercialization, Springer-Verlag, Berlin, Heidelberg, 2012 p. 325.
- Barbosa MFS, Medeiros MB, Mancilha IM, Schneider H, Lee H, J. Ind. Microbiol., 3, 241 (1988)
- Felipe MGA, in: Saha BC, Hayashi K (Eds.), Lignocellulose Biodegradation, American Chemical Society, New York, 2004 p. 300.
- Mohamad NL, Kamal SMM, Mokhtar MN, Food Rev. Int., 31, 74 (2015)
- Berovic M, Biotechnol. Bioeng., 64(5), 552 (1999)
- Zheng ZM, Guo NN, Hao J, Cheng KK, Sun Y, Liu DH, Process Biochem., 44(8), 944 (2009)
- Schmidt FR, Appl. Microbiol. Biotechnol., 68(4), 425 (2005)
- Reisman HB, Crit. Rev. Biotechnol., 13, 195 (1993)
- Stanbury PF, Whitaker A, Hall SJ, Principles of Fermentation Technology, third ed., Butterworth-Heinemann, Cambridge, 2016.
- Roberto IC, Mancilha IM, Sato S, Bioproc. Eng., 21, 505 (1999)
- Faria LFF, Gimenes MAP, Nobrega R, Pereira N, Appl. Biochem. Biotechnol., 98-100, 449 (2002)
- Branco RF, Santos JC, Murakami LY, Mussatto SI, Dragone G, Silva SS, Process Biochem., 42(2), 258 (2007)
- Martinez EA, Silva JBDE, Giulietti M, Solenzal AIN, Enzyme Microb. Technol., 40(5), 1193 (2007)
- Rodrigues RDLB, Rocha GJM, Rodrigues D, Filho HJI, Felipe MDA, Pessoa A, Bioresour. Technol., 101(4), 1247 (2010)
- Marton JM, Felipe MGA, e Silva JBA, Junior AP, Braz. J. Chem. Eng., 23, 9 (2006)
- Da Silva DDV, Felipe MDD, J. Chem. Technol. Biotechnol., 81(7), 1294 (2006)
- Gouveia ER, Nascimento RT, Souto-Maior AM, Rocha GJM, Quim. Nova, 32, 1500 (2009)
- Kim JH, Ryu YW, Seo JH, J. Ind. Microbiol. Biotechnol., 22, 181 (1999)
- Knoshaug EP, Franden MA, Stambuk BU, Zhang M, Singh A, Cellulose, 16, 729 (2009)
- Garcia-Ochoa F, Gomez E, Biotechnol. Adv., 27, 153 (2009)
- Van’t Riet K, Tramper J, Basic Bioreactor Design, Marcel Dekker, Inc., New York, 1991, pp. 274.
- Santos JC, Converti A, de Carvalho W, Mussatto SI, da Silva SS, Process Biochem., 40(1), 113 (2005)
- Martinez EA, Santos JAF, Cienc. Tecnol. Aliment., 32, 308 (2012)
- Canilha L, Carvalho W, e Silva JBA, J. Sci. Food Agric., 86, 1371 (2006)
- Silva CJSM, Mussatto SI, Roberto IC, J. Food Eng., 75(1), 115 (2006)
- Neivogt E, Stahl U, Fems Microbiol. Rev., 21, 231 (1997)
- Prakash G, Varma AJ, Prabhune A, Shouche Y, Rao M, Bioresour. Technol., 102(3), 3304 (2011)
- Pal S, Choudhary V, Kumar A, Biswas D, Mondal AK, Sahoo DK, Bioresour. Technol., 147, 449 (2013)