화학공학소재연구정보센터
Macromolecular Research, Vol.25, No.2, 190-196, February, 2017
Effect of Graphene on the Sound Damping Properties of Flexible Polyurethane Foams
E-mail:
The sound absorption coefficient, airflow resistivity and cell size of polyurethane (PU) foam with graphene as a solid-type additive and tetramethylsilane (TEMS) as a liquid-type additive were investigated. The results show that the sound absorption coefficient and airflow resistivity are closely related, and that increase of the flow resistivity improves the sound absorption coefficient of the PU foam. For the PU foam/graphene (0.2 phr) composite, the values of the sound absorption coefficient and airflow resistivity were 0.52 (frequency range of 1600 to 2500 Hz) and 292,900 Ns/m4, respectively, which were the highest values among the investigated additive species and additive content. The sound absorption coefficient of the PU foam/graphene (0.2 phr) composite increased by 18.2% compared with that of the PU foam without graphene. The results of the sound absorption coefficient and airflow resistivity of the PU foam suggest that graphene is an effective additive in the formation of the PU foam to decrease the cell size and increase the tortuous paths of the foams, and this small cell size consequently increases the acoustic damping properties of the PU foam.
  1. Chung YC, Kim HY, Yu JH, Chun BC, Macromol. Res., 23(4), 350 (2015)
  2. Im H, Roh SC, Kim CK, Macromol. Res., 21(6), 614 (2013)
  3. Lee Y, Jang MG, Choi KH, Han C, Kim WN, J. Appl. Polym. Sci., 133, 43557 (2016)
  4. Kim SH, Park HC, Jeong HM, Kim BK, J. Mater. Sci., 45(10), 2675 (2010)
  5. Harikrishnan G, Singh SN, Kiesel E, Macosko CW, Polymer, 51(15), 3349 (2010)
  6. DeBolt M, Kiziltas A, Mielewski D, Waddington S, Nagridge MJ, J. Appl. Polym. Sci., 133, 44086 (2016)
  7. Sung CH, Lee KS, Lee KS, Oh SM, Kim JH, Kim MS, Jeong HM, Macromol. Res., 15(5), 443 (2007)
  8. Verdejo R, Stampfli R, Alvarez-Lainez M, Mourad S, Rodriguez-Perez MA, Bruhwiler PA, Shaffer M, Compos. Sci. Technol., 69, 1564 (2009)
  9. Andersson A, Lundmark S, Magnusson A, Maurer FH, J. Cell. Plast., 46, 73 (2010)
  10. Baferani AH, Keshavarz R, Asadi M, Ohadi AR, Adv. Polym. Technol., 35, 21643 (2016)
  11. Bandarian M, Shojaei A, Rashidi AM, Polym. Int., 60, 475 (2011)
  12. Klempner D, Sophiea D, Suthar B, Frisch KC, Sendijarevic V, Polym. Mater. Sci. Eng., 65, 82 (1991)
  13. Gibson LJ, Ashby MF, Cellular Solids, 2nd ed., Cambridge University Press, New York, 1997.
  14. Imai Y, Asano T, J. Appl. Polym. Sci., 27, 183 (1982)
  15. Mosanenzadeh SG, Naguib HE, Park CB, Atalla N, J. Mater. Sci., 50(3), 1248 (2015)
  16. Kim YH, Choi SJ, Kim JM, Han MS, Kim WN, Bang KT, Macromol. Res., 15(7), 676 (2007)
  17. Kang MJ, Kim YH, Park GP, Han MS, Kim WN, Do Park S, J. Mater. Sci., 45(19), 5412 (2010)
  18. Kim YH, Kang MJ, Park GP, Park SD, Kim SB, Kim WN, J. Appl. Polym. Sci., 124(4), 3117 (2012)
  19. Yan DX, Dai K, Xiang ZD, Li ZM, Ji X, Zhang WQ, J. Appl. Polym. Sci., 120(5), 3014 (2011)
  20. Kim JM, Lee Y, Jang MG, Han C, Kim WN, J. Appl. Polym. Sci., 133, 44373 (2016)
  21. Zhang C, Vennerberg D, Kessler M, J. Appl. Polym. Sci., 132, 42515 (2015)
  22. Van Krevelen DW, Nijenhuis KT, in Properties of Polymers, Elsevier, Amsterdam, 2009, 4th ed., Chap. 8, p 233.
  23. Suhr J, Koratkar N, Keblinski P, Ajayan P, Nat. Mater., 4(2), 134 (2005)
  24. Ajayan PM, Suhr J, Koratkar N, J. Mater. Sci., 41(23), 7824 (2006)
  25. Doutres O, Noureddine A, Dong K, J. Appl. Phys., 110, 064901 (2011)