Korean Chemical Engineering Research, Vol.55, No.1, 74-79, February, 2017
Chlorella saccharophila 배양 최적화 및 유용물질의 생산
Optimization of Chlorella saccharophila Cultivation and Useful Materials Production
E-mail:
초록
본 연구에서는 Chlorella saccharophila의 배양을 통하여 바이오에너지 자원을 대량으로 확보하고자 배지 최적화 실험을 진행하였다. 최적화 인자로는 배양 형태, 초기 접종량, 탄소원 종류 및 농도, 질소원 종류 및 농도, 배양시간이다. 실험 결과, 배양 형태는 광원과 외부탄소원을 모두 공급하는 mixotrophic 배양이 적절하였다. 초기 접종량은 3% (v/v), 탄소원은 glucose 30 g/L, 질소원은 NaNO3 0.95 g/L를 첨가하는 것이 우수하였다. 최적 배지 조건으로 배양한 결과, oil의 함량은 12일에서 가장 높았으나, 회수되는 C. saccharophila의 biomass양과 chlorophyll의 양은 10일에서 가장 높았다. 위의 결과는 미세조류의 배지 최적화를 통하여 대량배양을 위한 기초자료로 사용될 수 있으리라 판단된다.
In this study, the optimization of several factors for Chlorella saccharophila cultivation was investigated. The studied factors were medium type, culture type, inoculum size, sugar/nitrogen source type and concentrations. As a result, the optimized conditions for C. saccharophila cultivation were found to be the best at 3% (v/v) inoculum, 30 g/L glucose and 0.95 g/L NaNO3 under mixotrophic culture. Under the optimized condition, the content of oil was high at 12 day, whereas, the amount of biomass and chlorophyll were high at 10 day.
- Demirbas A, Prog. Energy Combust. Sci., 33(1), 1 (2007)
- Kamm B, Gruber PR, Kamm M, “Biorefineries : Industrial Processes and Products,” WILEY-VCH Verlag GmbH & Co.KGaA, Weinheim(2008).
- Werpy T, Petersen G, “Top Value Added Chemicals from Biomass, volume I : Results of Screening for Potential Candidates from Sugars and Synthesis Gas,” The Pacific Northwest National Laboratory (PNNL) and the National Renewable Energy Laboratory (NREL)(2004).
- Jeong GT, Microbiol. Biotechnol. Lett., 42, 177 (2014)
- Hamasaki A, Shioji N, Ikuta Y, Hukuda Y, Makita T, Hirayama K, Matuzaki H, Tukamoto T, Sasaki S, Biochem Biotechnol., 45, 799 (1994)
- Park JI, Woo HC, Lee JH, Korean Chem. Eng. Res., 46(5), 833 (2008)
- Kang S, Kim S, Lee J, Korean J. Chem. Eng., 32(7), 1377 (2015)
- Choi K, Lee J, Jo J, Shin S, Kim J, Korean Chem. Eng. Res., 54(3), 310 (2016)
- Hashumoto S, Furukawa K, J. Fermt. Bioeng., 67, 62 (1989)
- Banat J, Puskas K, Esen I, Al-Dahar R, Biol. Wastes., 32, 265 (1990)
- Wilde EW, Benemann JR, Biotechnol. adv., 11, 781 (1993)
- Kandah M, Al-Rub FAA, Al-Dabaydeh N, Adsorpt. Sci. Technol., 21, 501 (2003)
- Lee JY, KSBB J., 4, 183 (2010)
- Ra CH, Kang CH, Jung JH, Jeong GT, Kim SK, Bioresour. Technol., 212, 254 (2016)
- Cho SJ, Lee DH, Luong TT, Park SR, Oh YK, Lee TH, J. Microbiol. Biotechnol., 21, 1073 (2011)
- Lee HS, Jeon SG, Oh YK, Kim KH, Chung SH, Na JG, Yeo SD, Korean Chem. Eng. Res., 50(4), 672 (2012)
- Singh D, Puri M, Wilkens S, Mathur AS, Tuli DK, Barrow CJ, Bioresour. Technol., 143, 308 (2013)
- Tan KC, Johns RM, Hydrobiologia, 215, 13 (1991)
- Tompkins J, Deville MM, Day JG, Turner MF, The Culture Collection of Algae and Protozoa. Ambleside, Institute of Freshwater Ecology, 204(1995).
- Andersen RA, Berges JA, Harrison JP, Watanabe MM, in Andersen RA (Ed.), Algal culturing techniques, Burlington Elsevier San Diego and London, Academic Press, 429-532(2005).
- Kim AR, Kim HS, Park MR, Kim SK, Jeong GT, Microbiol. Biotechnol. Lett., 44, 522 (2016)
- Folch J, Lees M, Sloane-Stanley GH, J Biochem., 226, 497 (1957)
- Kim JK, Park HJ, Kim YH, Joo H, Lee SH, Lee JH, J. Korean Ind. Eng. Chem., 24, 155 (2013)
- Liang YN, Sarkany N, Cui Y, Biotechnol. Lett., 31(7), 1043 (2009)
- Heidari M, Kariminia HR, Shayegan J, Process Saf. Environ. Protect., 104, 111 (2016)
- Nigam S, Rai MP, Sharma R, Am. J. Biochem. Biotechnol., 7(3), 124 (2011)
- Ra CH, Kang CH, Jung JH, Jeong GT, Kim SK, Bioresour. Technol., 218, 1279 (2016)