화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.55, No.1, 60-67, February, 2017
CO2 흡착 충전제 제조를 위한 microcrystalline cellulose (MCC) 입자 표면개질연구
Surface Modification of Microcrystalline Cellulose (MCC) Filler for CO2 Capture
E-mail:
초록
본 연구에서는 생분해성인 microcrystalline cellulose (MCC)를 표면 개질하여 음식포장재로 사용하는 polyethylene (PE) 복합체의 충전제로 사용하기 위한 사전 연구를 수행하였다. 1 분자 당 1 차 아미노기 1개와 2차 아미노기 2개씩을 가지는 실란커플링제인(3-trimethoxysilylpropyl)diethylenetriamine (TPDT)를 사용하여 MCC 표면에 이산화탄소 흡착 기능이 있는 아미노기를 도입하였다. TPDT 도입량, 팽윤시간, 반응온도 및 반응시간과 같은 다양한 반응 조건들을 변화시켜 각각의 반응조건의 변화가 MCC 표면 개질 정도에 미치는 영향을 연구하였다. MCC 표면에 접목된 TPDT의 양 및 화학 결합 생성을 Fourier transform infrared spectroscopy (FT-IR), elemental analysis (EA), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) 및 고체 상태 29Si nuclear magnetic resonance (NMR)법을 사용하여 분석하였다. 반응시간, 반응온도 및 TPDT 도입량이 증가할수록 MCC 표면에 접목되는 TPDT 양이 증가함을 확인하였다.
In this study, we performed surface modification of biodegradable microcrystalline cellulose (MCC) to use as a filler in polyethylene (PE) composite in food packaging application. We modified MCC surface with (3-trimethoxysilylpropyl) diethylenetriamine (TPDT) silane coupling agent, which has one primary amino group and two secondary amino groups per molecule, to introduce amino groups with a carbon dioxide adsorption capability in MCC. Effects of each of the reaction conditions such as amount of TPDT introduced, swelling time, reaction temperature, and reaction time on surface modification degree of MCC were investigated by changing a variety of above reaction conditions. The amount of TPDT grafted on MCC surface and formation of chemical bonds were confirmed by Fourier transform infrared spectroscopy (FT-IR), elemental analysis (EA), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and solid state 29Si nuclear magnetic resonance (NMR) spectroscopy. We confirmed increase of grafted amount of TPDT on MCC with increasing reaction time, reaction temperature, and amount of introduced TPDT.
  1. Lee D, Cho S, Kim Y, Lee YS, Polym. Korea, 37(5), 592 (2013)
  2. Tang JB, Sun WL, Tang HD, Radosz M, Shen YQ, Macromolecules, 38(6), 2037 (2005)
  3. Samir MASA, Alloin F, Dufresne A, Biomacromolecules, 6(2), 612 (2005)
  4. Abdelmouleha M, Boufia S, Belgacem MN, Duarte AP, Salaha AB, Gandini A, J. Adhes., 24(1), 43 (2004)
  5. Xie Y, Hill CA, Xiao Z, Militz H, Mai C, Compos. Pt. A-Appl. Sci. Manuf., 41(7), 806 (2010)
  6. Lee S, Ha K, Polym. Korea, 37(6), 777 (2013)
  7. Song SK, Kim JH, Hwang KS, Ha KR, Korean Chem. Eng. Res., 49(2), 181 (2011)
  8. Dugas V, Chevalier Y, J. Colloid Interface Sci., 264(2), 354 (2003)
  9. Salon MCB, Belgacem MN, Colloids Surf. A: Physicochem. Eng. Asp., 366(1), 147 (2010)
  10. Jeon JW, Ko YS, Appl. Chem. Eng., 27(1), 80 (2016)
  11. Arkles B, “Silane Coupling Agents: Connecting Across Boundaries,” Morrisville: Gelest(2003).
  12. Kim JG, Kang SC, Shin E, Kim DY, Lee JH, Lee YS, Appl. Chem. Eng., 23(1), 47 (2012)
  13. Belgacem MN, Salon-Brochier MC, Krouit M, Bras J, J. Adhes. Sci. Technol., 25(6-7), 661 (2011)
  14. Awanis J, Sofia SA, Samat N, Adv. Mater. Res., 576, 390 (2012)
  15. Tayommai T, Aht-Ong DD, Adv. Mater. Res., 488, 638 (2012)
  16. Kim H, Park S, Yang Y, Lim K, Ha K, Polym. Korea, 2 (2016)
  17. Lee S, Ha KR, Korean J. Chem. Eng., 33(8), 2469 (2016)
  18. Loof D, Hiller M, Oschkinat H, Koschek K, Materials, 9(6), 415 (2016)
  19. Coseri S, Biliuta G, Zemljic LF, Srndovic JS, Larsson PT, Strnad S, Lindstrom T, RSC Advances, 5(104), 85889 (2015)
  20. Zhang B, Leng E, Wang P, Gong X, Zhang J, Zhang Y, Xu M, J. Anal. Appl. Pyrolysis, 114, 119 (2015)
  21. Salon MCB, Gerbaud G, Abdelmouleh M, Bruzzese C, Boufi S, Belgacem MN, Magn. Reson. Chem., 45(6), 473 (2007)