화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.34, No.2, 376-383, February, 2017
Optimization of arsenite removal by adsorption onto organically modified montmorillonite clay: Experimental & theoretical approaches
E-mail:
Arsenic is a critical contaminant for aqueous environments as it poses harmful health risks.To meet the stringent regulations regarding the presence of arsenic in aqueous solutions, the feasibility of montmorillonite clay modified with hexadecyltrimethyl ammonium chloride as the adsorbent was tested for the removal of arsenic ions from aqueous solutions. A scanning electron microscopy (SEM) study confirmed that the organically modified nanoclay (ONC) adsorbent had a porous structure with a vast adsorbent surface.The x-ray fluorescence (XRF) analysis proved the presence of carbon in the structure of the modified nanoclay that can be evidence for the creation of ONC. The x-ray diffraction (XRD) analysis results confirm the existence of four main groups of minerals, carbonate (Calcite), clay (Askmtyt and Kandyt), silicate (Quartz), and phyllosilicate (Kaolinite), in the ONC structure.The influence of various parameters such as solution pH, adsorbent dosage, initial arsenite concentration, and contact time on arsenic adsorption onto ONC was investigated. A 25 full factorial central composite experimental design was applied. A central composite design under response surface methodology (RSM) was employed to investigate the effects of independent variables on arsenite removal and to determine the optimum condition. The experimental values were in a good fit with the ones predicted by the model. The optimal operating points (adsorbent dosage: 3.7 g L-1, surfactant dosage: 3 g L-1 and the contact time: 37.2min) giving maximum arsenite removal (95.95%) were found using Solver “Add-ins” in Microsoft Excel 2010.
  1. Navoni J, De Pietri D, Olmos V, Gimenez C, Mitre GB, de Titto E, Lepori EV, Sci. Total Environ., 499, 166 (2014)
  2. Ocinski D, Jacukowicz-Sobala I, Mazur P, Raczyk J, Kociolek-Balawejder E, Chem. Eng. J., 294, 210 (2016)
  3. Kumar PS, Flores RQ, Sjostedt C, Onnby L, J. Hazard. Mater., 302, 166 (2016)
  4. Smedley P, Kinniburgh D, Appl. Geochem., 17, 517 (2002)
  5. Yoshida T, Yamanchi H, Jun GF, Toxicol. Appl. Pharmacol., 198, 243 (2004)
  6. Lata S, Samadder SR, J. Environ. Manage., 166, 387 (2016)
  7. Bhaumik M, Noubactep C, Gupta VK, McCrindle RI, Maity A, Chem. Eng. J., 271, 135 (2015)
  8. An B, Kim H, Park C, Lee SH, Choi JW, J. Hazard. Mater., 289, 54 (2015)
  9. Morillo D, Perez G, Valiente M, J. Colloid Interface Sci., 453, 132 (2015)
  10. Xia YD, Mokaya R, Adv. Mater., 16(17), 1553 (2004)
  11. WHO, Guidelines for Drinking Water Quality: Recommendations, vol. 1, W. H. Organization, Geneva (1993).
  12. Mayo J, Yavuz C, Yean S, Cong L, Shipley H, Yu W, Falkner J, Kan A, Tomson M, Colvin V, Sci. Technol. Adv. Mater., 8, 71 (2007)
  13. Vaidya A, Datye K, Colourage, 29, 3 (1982)
  14. Malik A, Taneja U, American Dyestuff Reporter, 83, 20 (1994)
  15. Weber W, Morris J, Pergamon Press, New York (1964).
  16. Arslan I, Balcio lu IA, Bahnemann DW, Dyes Pigment., 47, 207 (2000)
  17. Mohan D, Pittman CU, J. Hazard. Mater., 142(1-2), 1 (2007)
  18. Yang L, Wu SN, Chen JP, Ind. Eng. Chem. Res., 46(7), 2133 (2007)
  19. Yang L, Wu SN, Chen JP, Ind. Eng. Chem. Res., 46(7), 2133 (2007)
  20. Gupta A, Yunus M, Sankararamakrishnan N, Chemosphere, 86, 150 (2012)
  21. Afzali D, Mostafavi A, Beitollah H, Microchim. Acta, 171, 97 (2010)
  22. Afzali D, Mostafavi A, Mirzaei M, J. Hazard. Mater., 181(1-3), 957 (2010)
  23. Bautista-Toledo MI, Rivera-Utrilla J, Ocampo-Perez R, Carrasco-Marin F, Sanchez-Polo M, Carbon, 73, 338 (2014)
  24. Ocampo-Perez R, Daiem MMA, Rivera-Utrilla J, Mendez-Diaz JD, Sanchez-Polo M, J. Colloid Interface Sci., 385, 174 (2012)
  25. Rathnayake SI, Xi YF, Frost RL, Ayoko GA, J. Colloid Interface Sci., 470, 183 (2016)
  26. Liu P, Zhang LX, Sep. Purif. Technol., 58(1), 32 (2007)
  27. Khajeh M, Biol. Trace Elem. Res., 145, 118 (2012)
  28. Park Y, Sun Z, Ayoko GA, Frost RL, Chemosphere, 107, 249 (2014)
  29. Zheng SL, Sun ZM, Park Y, Ayoko GA, Frost RL, Chem. Eng. J., 234, 416 (2013)
  30. Afzali D, Mostafavi ZB, Int. J. Nanosci. Nanotechnol., 7, 21 (2011)
  31. Myers R, Wiley, New York (2002).
  32. Annadurai G, Juang RS, Lee DJ, Adv. Environ. Res., 6, 191 (2002)
  33. Zainal-Abideen M, Aris A, Yusof F, Abdul-Majid Z, Selamat A, Omar S, Water Sci. Technol., 65, 496 (2012)
  34. Nair AT, Makwana AR, Ahammed MM, Water Sci. Technol., 69, 464 (2014)
  35. Moghaddam SS, Moghaddam MRA, Arami M, J. Hazard. Mater., 175(1-3), 651 (2010)
  36. Sohbatzadeh H, Keshtkar AR, Safdari J, Fatemi F, Int. J. Biol. Macromol., 89, 647 (2016)
  37. Azmi NB, Bashir MJ, Sethupathi S, Wei LJ, Aun NC, J. Environ. ChemEngin, 3, 1287 (2015)
  38. Ghafari S, Aziz HA, Isa MH, Zinatizadeh AA, J. Hazard. Mater., 163(2-3), 650 (2009)
  39. Aslani H, Nabizadeh R, Nasseri S, Mesdaghinia A, Alimohammadi M, Mahvi AH, Rastkari N, Nazmara S, Desalination Water Treat, 1 (2016)
  40. Khayet M, Zahrim AY, Hilal N, Chem. Eng. J., 167(1), 77 (2011)
  41. Podstawczyk D, Witek-Krowiak A, Dawiec A, Bhatnagar A, EcolEng, 83, 364 (2015)
  42. Murugesan A, Vidhyadevi T, Kalaivani S, Thiruvengadaravi K, Ravikumar L, Anuradha C, Sivanesan S, J. Water Process. Eng., 3, 132 (2014)
  43. Bouberka Z, Khenifi A, Mahamed HA, Haddou B, Belkaid N, Bettahar N, Derriche Z, J. Hazard. Mater., 162(1), 378 (2009)
  44. Gregg S, Sing K, Academic Press, New York, 248 (1982).