화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.45, 387-390, January, 2017
Performance of the all-vanadium redox flow battery stack
E-mail:
The all-vanadium redox flow battery (VRFB) stack of a kW class, which was composed of 31 cells with an electrode surface area of 2714 cm2 and a commercial anion exchange membrane, was tested using the electrolyte of 1.2 M VOSO4 in 2 M H2SO4. The charge.discharge cycle performance of VRFB stack was measured at the current density of 60 and 90 mA cm-2. Average energy efficiencies during charge. discharge cycle in the VRFB stack were about 76% and 70% for the current density of 60 and 90 mA cm-2, respectively. It was confirmed from the tested data that the homemade VRFB stack is suitable for the electric storage with high efficiency. The input power (IP) and output power (OP) in the VRFB stack at 90 mA cm-2 were 11.4 kW and 8.9 kW, respectively.
  1. Skyllas-Kazacos M, Sum E, J. Power Sources, 15, 179 (1985)
  2. Kim JG, Lee SH, Choi SI, Jin CS, Kim JC, Ryu CH, Hwang GJ, J. Ind. Eng. Chem., 16(5), 756 (2010)
  3. Choi HS, Oh YH, Ryu CH, Hwang GJ, J. Taiwan Inst. Chem. Eng., 45, 2920 (2014)
  4. Reed D, Thomsen E, Li B, Wang W, Nie ZM, Koeppel B, Sprenkle V, J. Power Sources, 306, 24 (2016)
  5. Zhao P, Zhang HM, Zhou HT, Chen J, Gao SJ, Yi BL, J. Power Sources, 162(2), 1416 (2006)
  6. Hwang GJ, Ohya H, J. Membr. Sci., 120(1), 55 (1996)
  7. Hwang GJ, Ohya H, J. Membr. Sci., 132(1), 55 (1997)
  8. Luo QT, Zhang HM, Chen J, Qian P, Zhai YF, J. Membr. Sci., 311(1-2), 98 (2008)
  9. Prifti H, Parasuraman A, Winardi S, Lim TM, Skyllas-Kazacos M, Membranes, 2, 275 (2012)
  10. Zhang SH, Yin CX, Xing DB, Yang DL, Jian XG, J. Membr. Sci., 363(1-2), 243 (2010)
  11. Chen D, Hickner MA, Agar E, Kumbur EC, Electrochem. Commun., 26, 37 (2013)
  12. Wang F, Sylvia JM, Jacob MM, Peramunage D, J. Power Sources, 242, 575 (2013)
  13. Zhang HZ, Zhang HM, Li XF, Mai ZS, Wei WP, Li Y, J. Power Sources, 217, 309 (2012)
  14. Sun CN, Tang Z, Belcher C, Thomas AZ, Fujimoto C, Electrochem. Commun., 43, 63 (2014)
  15. Semiz L, Sankir ND, Sankir M, J. Membr. Sci., 468, 209 (2014)
  16. Ling X, Jia C, Liu J, Yan C, J. Membr. Sci., 415-416, 306 (2012)
  17. Li Y, Lin XC, Wu L, Jiang CX, Hossain MM, Xu TW, J. Membr. Sci., 483, 60 (2015)
  18. Zhang H, Li X, Mai Z, Wei W, Energy Environ. Sci., 5, 6299 (2012)
  19. Zhang H, Li X, Mai Z, Zhang J, Energy Environ. Sci., 4, 1676 (2011)
  20. Li L, Kim S, Wang W, Vijayakumar M, Nie Z, Chen B, Zhang J, Xia G, Hu J, Graff G, Liu J, Yang Z, Adv. Eng. Mater., 1, 394 (2011)
  21. Li S, Huang KL, Liu SQ, Fang D, Wu XW, Lu D, Wu T, Electrochim. Acta, 56(16), 5483 (2011)
  22. Chang F, Hu CW, Liu XJ, Liu L, Zhang JW, Electrochim. Acta, 60, 334 (2012)
  23. Peng S, Wang N, Gao C, Lei Y, Liang X, Liu S, Liu Y, Int. J. Electrochem. Sci., 7, 4388 (2012)
  24. Liang XX, Peng S, Lei Y, Gao C, Wang NF, Liu SQ, Fang D, Electrochim. Acta, 95, 80 (2013)
  25. Wang G, Chen J, Wang X, Tian J, Kang H, Zhu X, Zhang Y, Liu X, Wang R, J. Energy Chem., 23, 73 (2014)
  26. Qian P, Zhang H, Chen J, Wen Y, Luo Q, Liu Z, You D, Yi B, J. Power Sources, 175(1), 613 (2008)
  27. Kaneko N, Nozaki K, Wada Y, Aoki T, Negishi A, Kamimoto M, Electrochim. Acta, 36, 1191 (1991)
  28. Li X, Huang K, Liu S, Tan N, Chen L, Trans. Nonferrous Met. Soc. China, 17, 195 (2007)
  29. Yue L, Li W, Sun F, Zhao L, Xing L, Carbon, 48, 3079 (2010)
  30. Wu T, Huang K, Liu S, Zhuang S, Fang D, Li S, Lu D, Su A, J. Solid State Electrochem., 16, 579 (2012)
  31. Wu XX, Xu HF, Lu L, Zhao H, Fu J, Shen Y, Xu PC, Dong YM, J. Power Sources, 250, 274 (2014)
  32. Yang D, Guo G, Hu J, Wang C, Jiang D, J. Mater. Chem., 18, 350 (2008)
  33. Wu XX, Xu HF, Shen Y, Xu PC, Lu L, Fu J, Zhao H, Electrochim. Acta, 138, 264 (2014)
  34. Hwang GJ, Oh YH, Ryu CH, Choi HS, Korean Chem. Eng. Res., 52(2), 182 (2014)