Journal of Industrial and Engineering Chemistry, Vol.45, 349-359, January, 2017
Dazzling red emission from TiO2 nanoparticles impregnated co-doped Gd3+ + Eu3+ : PVA polymer nanocomposites for photonic applications
E-mail:,
Red emission was obtained from rare earth doped polymer nanocomposites, namely, composites of polyvinyl-alcohol (PVA) co-doped with Gd3+ and Eu3+ and embedded with TiO2 nanoparticles (TiO2NP), under ultraviolet (UV) excitation. We successfully synthesized Eu3+: PVA, Gd3+: PVA, (Gd3+ + Eu3+): PVA, and (Gd3+ + Eu3+ + TiO2NP): PVA films by solution casting method. From X-ray diffraction patterns and Fourier-transform infrared spectral profiles, the structural details of the films and the ion.polymer interaction mechanism responsible for their formation were systematically analyzed. The thermal stability and decomposition dynamics of the prepared samples were evaluated by thermogravimetry and differential thermal analysis. Pertinent optical absorption bands related to Eu3+ and Gd3+ ions in the polymer composites were observed and assigned to the corresponding electronic transitions. The PVA film containing different concentrations of the Eu3+ dopant displayed red emission at 618 nm (5D0→7F2) under UV excitation at 396 nm (7F0→5L6). Upon co-doping with Gd3+ to form the (Gd3+ + Eu3+): PVA film, it exhibited red emission that was stronger than that from the singly doped Eu3+: PVA film under 270 nm excitation because of the energy transfer from Gd3+ to Eu3+ ions. After the TiO2 nanoparticles were evenly dispersed in the co-doped (Gd3+ + Eu3+): PVA films, the photoluminescence properties were remarkably enhanced and prominent red emission was observed under 274 nm excitation. The red emission of Eu3+ was significantly enhanced through an efficient energy-transfer process from the Gd3+ ions to Eu3+ ions and from the TiO2 nanoparticles to Eu3+ ions. A possible energy-transfer mechanism was clearly demonstrated by several fluorescent methods and lifetime decay dynamics. Based on the above results, these polymer composite films are promising candidates for red luminescent photonic devices.
- Brunet E, Juanes O, Rodriguez-Ubis, Juan C, Curr. Chem. Biol., 1(1), 11 (2007)
- Han Y, Wang Y, Huang S, Jin FL, Gai S, Niu N, Wang L, Yang P, J. Ind. Eng. Chem., 34, 269 (2016)
- Slooff LH, van Blaaderen A, Polman A, Hebbink GA, Klink SI, Van Veggel FCJM, Reinhoudt DN, Hofstraat JW, J. Appl. Phys., 91, 3955 (2002)
- Adiyodi AK, Jyothy PV, Toney TF, Jose G, Unnikrishnan NV, Optoelectron. Adv. Mater., 1(6), 281 (2007)
- Shang M, Li C, Lin J, Chem. Soc. Rev., 43, 1372 (2014)
- Kaur G, Kumar B, Verma RK, Rai SB, J. Chem. Soc.-Dalton Trans., 43, 11014 (2014)
- Han Y, Wang Y, Huang S, Jin FL, Gai S, Niu N, Wang L, Yang P, J. Ind. Eng. Chem., 34, 269 (2016)
- Kenyon AJ, Prog. Quantum Electron., 26, 225 (2002)
- Rivera VAG, Osorio SPA, Manzani D, Messaddeq Y, Nunes LAO, Marega E, Opt. Mater., 33, 888 (2011)
- de Araujo CB, Kassab LRP, Kobayashi RA, Naranjo LP, Cruz PAS, J. Appl. Phys., 99, 123522 (2006)
- Gouda M, Aljaafari AI, Adv. Nanoparticles, 1, 29 (2012)
- Tang CM, Tian YH, Hsu SH, Materials, 8, 4895 (2015)
- Ricciardi R, Auriemma F, De Rosa C, Laupretre F, Macromolecules, 37(5), 1921 (2004)
- Shin EJ, Lyoo WS, Lee YH, J. Appl. Polym. Sci., 123(2), 672 (2012)
- Qi X, Yao X, Deng S, Zhou T, Fu Q, J. Mater. Chem. A, 2, 2240 (2014)
- de Oliveira AAR, Gomide VS, Leite MF, Mansura HS, Pereira MM, Mater. Res., 12(2), 239 (2009)
- Huang X, Li B, Zhang H, Hussain I, Liang L, Tan B, Nanoscale, 3, 1600 (2011)
- Hamdalla TA, Hanafy TA, Optik, 127, 878 (2016)
- Kassaee MZ, Mohammadkhani M, Akhavan A, Mohammadi R, Struct. Chem., 22, 11 (2011)
- Zhou K, Jiang S, Bao C, Song L, Wang B, Tang G, Hu Y, Gui Z, RSC Adv., 2, 11695 (2012)
- Ramesh S, Arof AK, J. Power Sources, 99(1-2), 41 (2001)
- Shaulov AY, Lomakin SM, Zarkhina TS, Rakhimkulov AD, Shilkina NG, Muravlev YB, Berlin AA, Dokl. Phys. Chem., 403, 154 (2005)
- Sharma SK, Prakashand J, Pujari PK, Phys. Chem. Chem. Phys., 17, 29201 (2015)
- Pavani Y, Ravi M, Bhavani S, Sharma AK, Rao VVRN, Polym. Eng. Sci., 52(8), 1685 (2012)
- Zidan HM, J. Appl. Polym. Sci., 88(1), 104 (2003)
- Kondo Y, Tanaka K, Ota R, Fujii T, Ishikawa YI, Opt. Mater., 27, 1438 (2005)
- Liu WR, Lin CC, Chiu YC, Yeh YT, Jang SM, Liu RS, Opt. Exp., 183, 2946 (2009)
- Vijaya N, Jayasankar CK, J. Mol. Struct., 1036, 42 (2013)
- Xiong G, Cao Y, Guo Z, Jia Q, Tian F, Liu L, Phys. Chem. Chem. Phys., 18, 190 (2016)
- Wegh RT, Donker H, Meijerink A, Lamminmaki RL, Holsa J, Phys. Rev., B, Condens. Matter, 56, 13841 (1997)
- Li YC, Chang YH, Chang YS, Lin YJ, Laing CH, J. Phys. Chem. C, 111, 10682 (2007)
- Kumar GNH, Rao JL, Gopal NO, Narasimhulu KV, Chakradhar RPS, Rajulu AV, Polymer, 45(16), 5407 (2004)
- Abdelaziz M, Ghannam MM, Physica B, 405, 958 (2010)
- Herrmann A, Kuhn S, Tiegel M, Russel C, Opt. Mater., 37, 293 (2014)
- Biswas K, Balaji S, Karmakar P, Annapurna K, Opt. Mater., 39, 153 (2015)
- Xu M, Wang L, Liu L, Jia D, Sheng R, J. Lumines., 146, 475 (2014)
- Liu B, Zhao X, Zhao Q, He X, Feng J, J. Electron Spectrosc. Relat. Phenom., 148, 158 (2005)
- Vanheusden K, Warren WL, Seager CH, Tallant DR, Voigt JA, Gnade BE, J. Appl. Phys., 79, 7983 (1996)
- Yu JG, Yue L, Liu SW, Huang BB, Zhang XY, J. Colloid Interface Sci., 334(1), 58 (2009)
- Conde-Gallardo A, Garcia-Rocha M, Hernandez-Calderon I, Palomino-Merino R, Appl. Phys. Lett., 78, 3436 (2001)
- Tachikawa T, Ishigaki T, Li JG, Fujitsuka M, Majima T, Angew. Chem.-Int. Edit., 47, 5348 (2008)
- Wang Q, Ouyang SY, Zhang WH, Yang B, Zhang YP, Xia HP, Acta Metall. Sin., 28(4), 487 (2015)
- Singh BP, Parchur AK, Ningthoujam RS, Ansari AA, Singh P, Rai SB, J. Chem. Soc.-Dalton Trans., 43, 4779 (2014)
- Kim SY, Won YH, Jang HS, Nat. Sci. Rep., 7866(5), 1 (2015)
- Bahadur A, Dwivedi Y, Rai SB, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 118, 177 (2014)
- Szpikowska-Sroka B, Zadło M, Czoik R, Zur L, Pisarski WA, J. Lumines., 154, 290 (2014)
- Han B, Liang H, Huang Y, Tao Y, Su Q, Appl. Phys. B-Lasers Opt., 104, 241 (2011)