화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.45, 241-247, January, 2017
Highly selective separation of vanadium over iron from stone coal by oxalic acid leaching
E-mail:
In this paper, a novel method was proposed to selectively extract vanadium from stone coal by oxalic acid leaching. Vanadium was leached, but the iron impurity wasmaintained in the leaching residue. The effects of leaching conditions on the leaching efficiency of vanadium and iron were investigated for oxalic and sulfuric acid leaching, respectively. For oxalic acid leaching, 71.5% of the vanadium can be recovered with only 3.4% of the iron impurity leached under the leaching conditions: a dosage of H+ of 12 mol/kg, a leaching time of 6 h, a leaching temperature of 368 K (95 °C) and a water-mineral ratio of 1.5 L/kg. However, under the same conditions, 74.1% of the vanadium and 13% of the iron were leached during sulfuric acid leaching. The XRD and FTIR analyses showed that both oxalic and sulfuric acid leaching can destroy the crystal lattice structure of muscovite, resulting in the leaching efficiency of vanadium without much difference. Further, the SEM-EDS and XPS analyses indicated that very little pyrite dissolved during oxalic acid leaching, but that much more pyrite dissolved during sulfuric acid leaching. Therefore, oxalic acid leaching can achieve a highly selective separation of vanadium over iron from stone coal.
  1. Zhang GZ, Chen DS, Zhao W, Zhao HX, Wang LN, Li D, Qi T, Sep. Purif. Technol., 165, 166 (2016)
  2. Zhang YM, Bao SX, Liu T, Chen TJ, Huang J, Hydrometallurgy, 109, 116 (2011)
  3. Imtiaz M, Rizwan MS, Xiong SL, Li HL, Ashraf M, Shahzad SM, Shahzad M, Rizwan M, Tu SX, Environ. Int., 80, 79 (2015)
  4. Bin ZY, Hunan Nonferr. Met., 22, 16 (2006)
  5. Zhao YL, Zhang YM, Liu T, Chen TJ, Bian Y, Bao SX, Int. J. Miner. Process., 121, 1 (2013)
  6. Wang F, Zhang YM, Liu T, Huang J, Zhao J, Zhang GB, Liu J, Int. J. Miner. Process., 145, 87 (2015)
  7. Zeng X, Wang F, Zhang HF, Cui LJ, Yu J, Xu GW, Fuel, 142, 180 (2015)
  8. Ye PH, Wang XW, Wang MY, Fan YY, Xiang XY, Hydrometallurgy, 117-118, 108 (2012)
  9. Wang MY, Xiang XY, Zhang LP, Xiao LS, Rare Met., 27, 112 (2008)
  10. Zhu XB, Zhang YM, Huang J, Liu T, Wang Y, Int. J. Miner. Process., 114-117, 1 (2012)
  11. Li MT, Wei C, Fan G, Wu HL, Li CX, Li XB, Int. J. Miner. Process., 95(1-4), 62 (2010)
  12. Zhou XY, Li CL, Li J, Liu HZ, Wu SY, Hydrometallurgy, 99, 97 (2009)
  13. Li W, Zhang YM, Liu T, Huang J, Wang Y, Hydrometallurgy, 131-132, 1 (2013)
  14. Li XB, Deng ZG, Wei C, Li CX, Li MT, Fan G, Huang H, Hydrometallurgy, 154, 40 (2015)
  15. Hu GP, Chen DS, Wang LN, Liu JC, Zhao HX, Liu YH, Qi T, Zhang CQ, Yu P, Sep. Purif. Technol., 125, 59 (2014)
  16. Tavakoli MR, Dreisinger DB, Hydrometallurgy, 141, 17 (2014)
  17. Ma YQ, Wang XW, Wang MY, Jiang CJ, Xiang XY, Zhang XL, Hydrometallurgy, 153, 38 (2015)
  18. Wu XY, Zhang FY, Bian X, Xue SF, Yin SH, Zheng Q, J. Rare Earths, 31, 722 (2013)
  19. Ma RJ, Nonferr. Met. Extr. Metall., 48, 42 (1996)
  20. Ning PG, Cao HB, Lin X, Zhang Y, Chin. J. Nonferr. Met., 19, 773 (2009)
  21. Wang Y, Zhang YM, Huang J, Liu T, Li W, Zhang GB, Nonferr. Met. Extr. Metall., 11, 25 (2013)
  22. Lupi C, Pilone D, Hydrometallurgy, 57, 201 (2000)
  23. Li XB, Wei C, Deng ZG, Li MT, Li CX, Fan G, Hydrometallurgy, 105, 359 (2011)
  24. Xiao C, Tang MT, Yang SH, Li Q, J. Cent. South Univ., 38, 663 (2007)
  25. Liu XW, Wu HY, Dai ZL, Li GY, Min. Metall. Eng., 26, 65 (2006)
  26. Deng ZG, Wei C, Li MT, Li CX, Fan G, Ge HW, Chin. J. Rare Met., 33, 290 (2009)
  27. Astuti W, Hirajima T, Sasaki K, Okibe N, Miner. Eng., 85, 1 (2016)
  28. Mazurek K, Hydrometallurgy, 134-135, 26 (2013)
  29. Kim HI, Lee KW, Mishra D, Yi KM, Hong JH, Jun MK, Park HK, J. Ind. Eng. Chem., 20(6), 4457 (2014)
  30. Marafi M, Stanislaus A, Resour. Conserv. Recycl., 52, 859 (2008)
  31. Erust C, Akcil A, Bedelova Z, Anarbekov K, Baikonurova A, Tuncuk A, Waste Manage., 49, 455 (2016)
  32. Kim HI, Lee KW, Mishra D, Yi KM, Hong JH, Jun MK, Park HK, J. Ind. Eng. Chem., 21, 1265 (2015)
  33. Kim JK, Oh HS, Jo CW, Suh YJ, Jang HD, Koo KK, Chem. Eng. Res. Des., 88(11A), 1467 (2010)
  34. Zeng L, Cheng CY, Hydrometallurgy, 98, 1 (2009)
  35. Lee FM, Knudsen RD, Kidd DR, Ind. Eng. Chem. Res., 31, 487 (1992)
  36. Bao SX, Zhang YM, Huang J, Yang X, Hu YJ, MRS Proc., http://dx.doi.org/10.1557/opl.2012.409, imrc2011-1380-s21-full013., 120 (1380)
  37. Zhu YG, Zhang GF, Feng QM, Lu YP, Ou LM, Huang SJ, Trans. Nonferr. Met. Soc. China, 20, s107 (2010)
  38. Reig F, Adelantado J, Moreno MM, Talanta, 58, 811 (2002)
  39. Wen L, Liang WX, Zhang ZG, Huang JC, The Infrared Spectroscopy of Minerals, 1st ed., Chongqing University Press, Chongqing, 1989.
  40. Chen L, Man RL, Li ZM, J. Instrum. Anal., 26, 582 (2007)
  41. Deng HP, Wu XM, Ouyang JM, Chem. J. Chin. Univ., 27, 595 (2006)
  42. Tan YH, Ouyang JM, Ma J, Feng HH, Huang F, Spectrosc. Spectr. Anal., 23, 700 (2003)
  43. NIST XPS database, 2012, http://srdata.nist.gov/xps/selEnergyType.aspx(accessed 16.04.16)