화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.45, 156-163, January, 2017
Preparation of redox-sensitive β-CD-based nanoparticles with controlled release of curcumin for improved therapeutic effect on liver cancer in vitro
E-mail:
A redox-sensitive beta-cyclodextrin nanoparticle (β-CD NP) system was prepared for the controlled release of curcumin (CUR), and its therapeutic efficacy on liver cancer was compared with that of CUR in vitro. 1-Dodecanethiol (DDT) was conjugated to per-6-thiol-β-CD by disulfide bond formation though an oxidation reaction (β-CD-ss-DDT). Rhodamine B (RhoB) was included into the β-CD-ss-DDT cavity by inclusion complex formation (β-CD-ss-DDT-ic-RhoB). CUR was encapsulated into β-CD-ss-DDT-ic-RhoB aggregates by self-assembly through dialysis method. The composition, morphology, size distribution and zeta potential of β-CD-ss-DDT-ic-RhoB NPs were characterized by proton nuclear magnetic resonance (1H NMR), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and dynamic light scattering (DLS), respectively. It was found that CUR was released from β-CDss-DDT-ic-RhoB/CUR NPs due to the dissociation of β-CD-ss-DDT through a reduction reaction. β-CD-ss-DDT-ic-RhoB/CUR NPs had a higher cellular uptake ratio and a greater anticancer effect on mouse hepatoma Hepa 1-6 cells than CUR, mainly attributed to the improved water-solubility of CUR after encapsulating it in the NPs. Our findings suggest that β-CD-ss-DDT-ic-RhoB NPs can be used as nanocarriers for delivering CUR into cancer cells, thereby serving as a clinical therapeutic agent for liver cancer treatment.
  1. DeVita VT, Chu E, Cancer Res., 68, 8643 (2008)
  2. Kalepu S, Nekkanti V, Acta Pharmacol. Sin. B, 5, 442 (2015)
  3. Narvekar M, Xue HY, Eoh JY, Wong HL, AAPS PharmSciTech, 15, 822 (2014)
  4. Fermeglia M, Ferrone M, Lodi A, Pricl S, Carbohydr. Polym., 53, 15 (2003)
  5. Mizusako H, Tagami T, Hattori K, Ozeki T, J. Pharm. Sci., 104, 2934 (2015)
  6. Zerkoune L, Angelova A, Lesieur S, Nanomaterials, 4, 741 (2014)
  7. Perez-Tomas R, Curr. Med. Chem., 13, 1859 (2006)
  8. Gottesman MM, Fojo T, Bates SE, Nat. Rev. Cancer, 2, 48 (2002)
  9. Nobili S, Lippi D, Witort E, Donnini M, Bausi L, Mini E, Capaccioli S, Pharmacol. Res., 59, 365 (2009)
  10. Newman DJ, Cragg GM, J. Nat. Prod., 70, 461 (2007)
  11. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB, Mol. Pharm., 4, 807 (2007)
  12. Kolivoska V, Mohos M, Pobelov IV, Rohrbach S, Yoshida K, Hong WJ, Fu YC, Moreno-Garcia P, Meszaros G, Broekmann P, Hromadova M, Sokolova R, Valasek M, Wandlowski T, Chem. Commun., 50, 11757 (2014)
  13. Kalyanasundaram K, Thomas JK, J. Am. Chem. Soc., 99, 2039 (1977)
  14. Liu Y, Chen Y, Liu SX, Guan XD, Wada T, Inoue Y, Org. Lett., 3, 1657 (2001)
  15. Lincoln SF, Coates JH, Schiller RL, J. Incl. Phenom., 5, 709 (1987)
  16. Nah JW, Paek YW, Jeong YI, Kim DW, Cho CS, Kim SH, Kim MY, Arch. Pharm. Res., 21, 418 (1998)
  17. Lee JY, Chung SJ, Cho HJ, Kim DD, Adv. Funct. Mater., 25(24), 3705 (2015)
  18. Beig A, Agbaria R, Dahan A, PLOS ONE, 8, e68237 (2013)
  19. He C, Hu Y, Yin L, Tang C, Yin C, Biomaterials, 31, 3657 (2010)
  20. Kanapathipillai M, Brock A, Ingber DE, Adv. Drug Deliv. Rev., 79-80, 107 (2014)
  21. Mura S, Nicolas J, Couvreur P, Nat. Mater., 12(11), 991 (2013)
  22. Nagahama K, Sano Y, Kumano T, Bioorg. Med. Chem. Lett., 25, 2519 (2015)
  23. Hasegawa T, Kondo Y, Koizumi Y, Sugiyama T, Takeda A, Ito S, Hamada F, Bioorg. Med. Chem., 17, 6015 (2009)
  24. Tsai SW, Liaw JW, Kao YC, Huang MY, Lee CY, Rau LR, Huang CY, Wei KC, Ye TC, PLOS ONE, 8, e76545 (2013)
  25. Du Q, Deng S, Shen KP, Hu B, Pharm. Clin. Chin. Mater. Med., 27, 28 (2011)