화학공학소재연구정보센터
Powder Technology, Vol.302, 1-7, 2016
Effect of mechanical alloying on the microstructure and properties of W-Ti alloys fabricated by spark plasma sintering
W-15 wt.% Ti alloys were fabricated through mechanical alloying with different milling times ranging from 10 h to 80 h. The powders milled for 10, 30, 60, and 80 h were sintered by spark plasma sintering at 1600 degrees C. The milled powders and sintered samples were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy; and their microhardness and thermal conductivity were investigated. Results revealed that the particles underwent welding, fracturing, and rewelding when the milling time increased. The grain size decreased, whereas the microstrain increased from 0.344% at 10 h to 0.543% at 80 h and dislocation density increased with the increase in milling time. However, the WC contamination was induced into the powder after a long milling time, thereby possibly forming the (Ti,W)C1-x solid solution with the addition of Ti after sintering. The second phase became uniformly distributed and the W grain size was reduced from 1.48 mu m to 0.31 mu m after a long milling time. Furthermore, the Vickers hardness increased from 543.05 Hv to 890.30 Hv and thermal conductivity also increased with an increase in milling time. (C) 2016 Elsevier B.V. All rights reserved.