화학공학소재연구정보센터
Journal of the Electrochemical Society, Vol.163, No.8, A1493-A1502, 2016
Composite of Li-Rich Mn, Ni and Fe Oxides as Positive Electrode Materials for Li-Ion Battery
A porous layered composite of Li2MnO3 and LiMn1/3Ni1/3Fe1/3O2 (composition: Li1.2Mn0.53Ni0.13Fe0.13O2) is prepared by reverse microemulsion method employing tri-block co-polymer, F068 as a soft-polymer template. The Co-free composite is studied as a cathode material for Li-ion battery. Several samples are prepared by heating the precursor in the temperature range between 500 and 900 degrees C. The N-2 adsorption/desorption studies reveal that the product samples possess mesoporosity with broadly distributed pores around 15-50 nm diameter. Pore volume and surface area decrease by increasing the temperature of preparation. Charge-discharge, cycling and rate capability are investigated. The discharge capacity of the sample prepared at 900 degrees C is about 170 mAh g(-1) at a specific current of 25 mA g(-1) with a good cycling stability. A value of 140 mAh g(-1) is obtained at the end of 50 charge-discharge cycles. Discharge capacity of 91 mAh g(-1) is obtained at a specific current of 206 mA g(-1). A high rate capacity of the composite is attributed to its porous nature. (C) The Author(s) 2016. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. All rights reserved.