Journal of Power Sources, Vol.336, 279-285, 2016
A large format in operando wound cell for analysing the structural dynamics of lithium insertion materials
This paper presents a large wound cell for in operando neutron diffraction (ND) from which high quality diffraction patterns are collected every 15 min while maintaining conventional electrochemical performance. Under in operando data collection conditions the oxygen atomic displacement parameters (ADPs) and cell parameters were extracted for Li0.18Sr0.66Ti0.5Nb0.5O3. Analysis of diffraction data collected under in situ conditions revealed that the lithium is located on the (0.5 0.5 0) site, corresponding to the 3c Wyckoff position in the cubic perovskite unit cell, after the cell is discharged to I V. When the cell is discharged under potentiostatic conditions the quantity of lithium on this site increases, indicating a potential position where lithium becomes pinned in the thermodynamically stable phase. During this potentiostatic step the oxygen ADPs reduce significantly. On discharge, however, the oxygen ADPs were observed to increase gradually as more lithium is inserted into the structure. Finally, the rate of unit cell expansion changed by similar to 44% once the lithium content approached similar to 0.17 Li per formula unit. A link between lithium content and degree of mobility, disorder of the oxygen positions and changing rate of unit cell expansion at various stages during lithium insertion and extraction is thus presented. (C) 2016 Published by Elsevier B.V.