Journal of Power Sources, Vol.335, 20-30, 2016
Lithium and sodium storage in highly ordered mesoporous nitrogen-doped carbons derived from honey
Honey, a widely existent biomass, consists mainly of carbohydrate and other nitrogen-containing substances such as proteins, enzymes and organic acids. It can be mixed homogeneously with mesoporous silica template for its excellent water-solubility and moderate viscosity. In this work, honey was employed as a nitrogen-containing carbon precursor to prepare nitrogen-doped ordered mesoporous carbons (OMC5). The obtained honey derived mesoporous nitrogen-doped carbons (HMNCs) with dilated interlayer spacings of 0.387-0.395 nm, narrow pore size distributions centering at around 4 nm and satisfactory N contents of 1.38-4.32 wt% offer superb dual functionality for lithium ion battery (LIB) and sodium ion battery (NIB) anodes. Tested against Li, the optimized HMNC-700 delivers a superior reversible capacity of 1359 mA h g(-1) after 10 cycles at 100 mA g(-1) and excellent rate capability and cycling stability of 722 mA h g-1 after 200 cycles at 1 A g-1. For NIB applications, HMNC-700 offers a high initial reversible capacity of 427 mA h g-1 and stable reversible capacity of 394 mA h g(-1) at 100 mA g(-1). (C) 2016 Published by Elsevier B.V.