Journal of Physical Chemistry A, Vol.120, No.43, 8590-8598, 2016
Infrared Spectra of Novel NgBeSO(2) Complexes (Ng = Ne, Ar, Kr, Xe) in Low Temperature Matrixes
The novel noble-gas complexes NgBeSO(2) (Ng = Ne, Ar, Kr, Xe) have been prepared in the laser-evaporated beryllium atom reactions with SO2 in low-temperature matrixes. Doped with heavier noble gas, the guest (Ar, Kr, Xe) atom can substitute neon to form more stable complex. Infrared spectroscopy and theoretical calculations are used to confirm the band assignment. The dissociation energies are calculated at 0.9, 4.0, 4.7, and 6.0 kcal/mol for NeBeSO2, ArBeSO2, KrBeSO2, and XeBeSO2, respectively, at the CCSD(T) level. Quantum chemical calculations demonstrate that the Ng-Be bonds in NgBeSO(2) could be formed by the combination of electron-donation and ion-induced dipole interactions. The Wiberg bond index (WBI) values of Ng-Be bonds and LOL (localized orbital locator) profile indicate that the Ng-Be bond exhibits a gradual increase in covalent character along Ne to Xe.