Journal of Hazardous Materials, Vol.320, 581-590, 2016
pH-dependent degradation of p-nitrophenol by sulfidated nanoscale zerovalent iron under aerobic or anoxic conditions
Sulfidated nanoscale zerovalent iron (S-NZVI) is attracting considerable attention due to its easy production and high reactivity to pollutants. We studied the reactivity of optimized S-NZVI (Fe/S molar ratio 6.9), comparing with pristine nanoscale zerovalent iron (NZVI), at various pH solutions (6.77-9.11) towards p-nitrophenol (PNP) under aerobic and anoxic conditions. Studies showed that the optimized extent of sulfidation could utterly enhance PNP degradation compared to NZVI. Batch experiments indicated that in anoxic S-NZVI systems the degradation rate constant increased with increasing pH up to 7.60, and then declined. However, in aerobic S-NZVI, and in anoxic or aerobic NZVI systems, it decreased as pH increased. It was manifested that anoxic S-NZVI systems preferred to weaker alkaline solutions, whereas aerobic S-NZVI systems performed better in acidic solutions. The highest TOC removal efficiency of PNP (17.59%) was achieved in the aerobic S-NZVI system at pH 6.77, revealing that oxygen improved the degradation of PNP by excessive amounts of hydroxyl radicals in slightly acidic conditions, and the TOC removal efficiency was supposed to be further improved in moderate acidic solutions. Acetic acid, a nontoxic ring opening by-product, confirms that the S-NZVI system could be a promising process for industrial wastewater containing sulfide ions. (C) 2016 Elsevier B.V. All rights reserved.
Keywords:Sulfidation;Nanoscale zerovalent iron;Aerobic conditions;p-Nitrophenol;pH-dependent degradation