화학공학소재연구정보센터
Energy Conversion and Management, Vol.127, 667-678, 2016
An experimental investigation of a novel design air humidifier using direct solar thermal heating
In this study, a novel solar heated multi-stage bubble column humidifier is designed and tested. The overall objective of this work is to investigate the main operating parameters of the new humidifier. The study addresses the significance of the perforated plate geometric features, optimum balance of air superficial velocity and water column height, and the influence of inlet water temperature and inlet air relative humidity on the performance of the humidifier. The day round performance of the humidifier is investigated in single stage, two stage, and three stage configuration, in which each configuration was tested with and without the integration of the Fresnel lens. Findings show that the average day round absolute humidity, without Fresnel lens, increased up to 9% for the two stage configuration and 23% for the three stage configuration as compared to the single stage configuration of the humidifier. The integration of the Fresnel lens further increased the absolute humidity up to 25% as compared to the results obtained without the integration of the Fresnel lens under the same prevailing conditions, which is significant. Moreover, the current humidifier shows a higher humidification efficiency in the climatic conditions that have a lower inlet air relative humidity. Furthermore, the finding demonstrates that the newly developed multi-stage bubble column humidifier has better performance as compared to the conventional single stage bubble column humidifier. The findings from this study are of pivotal importance to understand the optimum operating conditions of the humidifier for its possible integration with the dehumidifier. Consequently, an improved humidification-dehumidification desalination system attained. (C) 2016 Elsevier Ltd. All rights reserved.