Energy Conversion and Management, Vol.126, 1168-1177, 2016
Modeling chemical kinetics of avocado oil ethanolysis catalyzed by solid glycerol-enriched calcium oxide
The catalytic activity of glycerol-enriched calcium oxide for the alcoholysis reaction between avocado oil and ethanol was investigated. The calcium oxide was derived from Mytilus Galloprovincialis shells. This study systematically examined the influence of temperature, ethanol-to-oil molar ratio, and the catalyst amount on the variation in the concentration of triacylglycerols and biodiesel with reaction time. The interaction between the reaction variables (ethanol-to-oil molar ratio and catalyst amount), their influence on the ethanolysis process, and the optimum variables affecting the process were determined through the response surface methodology. A previously developed mathematical model was applied for the current ethanolysis process, and the model parameters were determined. The ethanolysis reaction occurred between the surface chemisorbed ethoxide ions and oil molecules in the liquid phase, while, the overall process was controlled by the ethanol-adsorption step. The physico-chemical properties of biodiesel, produced using potassium methoxide catalyst, were additionally measured. (C) 2016 Elsevier Ltd. All rights reserved.