화학공학소재연구정보센터
Chemical Reviews, Vol.116, No.22, 14137-14180, 2016
Advances in Quantum Mechanochemistry: Electronic Structure Methods and Force Analysis
In quantum mechanochemistry, quantum chemical methods are used to describe molecules under the influence of an external force. The calculation of geometries, energies, transition states, reaction rates, and spectroscopic properties of molecules on the force-modified potential energy surfaces is the key to gain an in-depth understanding of mechanochemical processes at the molecular level. In this review, we present recent advances in the field of quantum mechanochemistry and introduce the quantum chemical methods used to calculate the properties of molecules under an external force. We place special emphasis on quantum chemical force analysis tools, which can be used to identify the mechanochemically relevant degrees of freedom in a deformed molecule, and spotlight selected applications identify the of quantum mechanochemical methods to point out their synergistic relationship with experiments.