Chemical Physics Letters, Vol.665, 64-70, 2016
Glass phase and other multiple liquid-to-liquid transitions resulting from two-liquid phase competition
Melt supercooling leads to glass formation. Liquid-to-liquid phase transitions are observed depending on thermal paths. Viscosity, density and surface tension thermal dependences measured at heating and subsequent cooling show hysteresis below a branching temperature and result from the competition of two-liquid phases separated by an enthalpy difference depending on temperature. The nucleation classical equation of these phases is completed by this enthalpy saving existing at all temperatures. The glass phase thermodynamic parameters and their thermal variation have already been determined in such a two-liquid model. They are used at high temperatures to predict liquid-to-liquid transitions in some metallic glass-forming melts. (C) 2016 Elsevier B.V. All rights reserved.