화학공학소재연구정보센터
Polymer(Korea), Vol.25, No.1, 49-55, January, 2001
E-beam 전조사법에 의한 SAPP-g-(AN/St) 섬유상 이온교환체의 합성 및 우라늄 흡착특성
Synthesis of SAPP-g-(AN/St) Fibrous Ion-Exchanger by E-beam Pre-irradiation and Their Adsorption Properties for Uranium Ion
E-mail:
초록
비닐계 단량체인 아크릴로니트릴과 스티렌을 E-beam 전조사법에 의해 폴리프로필렌 섬유에 그라프트 반응시켜 PP-g-(AN/St) 공중합체를 제조한 후 아미드옥심기와 슬폰기를 도입하여 이관능성 이온교환섬유를 제조하였다. 그라프트율은 단량체 내에 아크릴로니트릴의 조성이 감소할수록 증가하였으며 최대 101.1%이었고 최대 아미드옥심화율은 7.2 mmol/g이었다. 또한 섬유상 이온교환체의 초기 열분해 온도는 120 ℃이었고 함수율은 공중합체 내에 아미드옥심화율이 증가할수록 감소하였고 슬폰화율이 증가할수록 증가하는 경향을 나타냈다. APP-g-AN, SPP-g-St, ASPP-g-(AN/St) 이온교환체의 우라늄 흡착량은 각각 12.4, 34, 38 mg/g이었으며 최적 흡착시간은 약 50시간이었다. 우라늄 흡착 실험결과, 본 실험에서 합성한 이온교환체 ASPP-g-(AN/St)는 UO22+에 대하여 우수한 성능을 보였다.
The bi-functional ion exchangers, SAPP-g-(AN/St) were synthesized with mixed vinyl monomers(acrylonitrile and styrene) onto PP fabric by the pre-irradiation grafting with E-beam and its subsequent amidoximination and sulfonation. The degree of grafting of PP-g-(AN/St) was increased with decreasing acrylonitrile composition in the mixed monomers. The water uptake of copolymers increased with decreasing in the amidoxime ratio in the copolymers and increased by sulfonation, but decreased by amidoximation. The UO22+ adsorption capacity of SPP-g-St, APP-g-AN, and SAPP-g-(AN/St) were 12.4, 34.0, and 38.0 mg/g, respectively and the optimum adsorption time is about 50 hrs. As a result of uranium adsorption, the synthesized ion exchanger, which we obtained have also good affinity toward the adsorption or chelating with UO22+ ions.
  1. Okamoto J, Sugo T, Katakai A, Omichi H, J. Appl. Polym. Sci., 30, 2967 (1985) 
  2. Suzuki M, Fuji T, Tanaka S, Rep. Sprc. Proj. Res. Energy, 49 (1987)
  3. Suzuki M, Chihara K, Fujimoto M, Yagi H, Wada A, Bull. Seawater Soc. Jpn., 39, 152 (1985)
  4. Hwang TS, Park JK, Hong SK, Shin HT, Nho YC, Korea J. Mater. Research, 6, 761 (1996)
  5. Egawa H, Polym. Processing Jpn., 32, 38 (1983)
  6. Sugo T, Saito K, Membrane, 71, 58 (1990)
  7. El-Salmawi KM, El-Naggar AM, Said HM, Zaharan AH, Polym. Int., 42, 225 (1997) 
  8. Dessouki AM, Taher NH, El-Arnaouty MB, Polym. Int., 45, 67 (1998) 
  9. Zohdy MH, Sahar SM, Hassan MS, Khalil EM, El-Hossamy M, El-Naggar AM, Polym. Degrad. Stabil., 63, 187 (1999) 
  10. Patel AC, Brahmbhatt RB, Rao PVC, Rao KV, Devi S, Eur. Polym. J., 36, 2477 (2000) 
  11. Kawai T, Saito K, Sugita K, Kawakami T, Kanno J, Katakai A, Seko N, Sugo T, Radiat. Phys. Chem., 59, 405 (2000) 
  12. Choi SH, Nho YC, Radiat. Phys. Chem., 57, 187 (2000) 
  13. Choi SH, Nho YC, Radiat. Phys. Chem., 58, 157 (2000) 
  14. Huh KS, Suh GS, J. Korean Inst. Chem. Engineers, 29, 63 (1991)
  15. Kwon OH, Nho YC, Yang HS, J. Korean Ind. Eng. Chem., 8(6), 934 (1997)
  16. Hwang TS, Hwang DS, Nho YC, Polym.(Korea), 24(2), 174 (2000)
  17. Nasef MM, Polym. Degrad. Stabil., 68, 231 (2000)