화학공학소재연구정보센터
Chemical Engineering Science, Vol.155, 438-448, 2016
Experimental investigation on pressure drop and heat transfer in metal foam filled tubes under convective boundary condition
Heat transfer under convective boundary condition is common in heat exchangers. This paper presented the experimental results of air flow and heat transfer through three stainless steel foam filled tubes under convection boundary condition. The air flow velocity inside the tube is relatively high, which varied from 7.0 to 26.0 m/s. The stainless steel foam filled tubes, manufactured using high-temperature metallic sintering technique, are of different pore densities (10, 30 and 70 PPI) but have the same porosity of 0.93. The air pressure drop through the stainless steel foam filled tubes was measured. It was found that the inertial drag is the dominant part of the pressure drop at higher velocity. The pressure drop experimental data under high velocity were compared to the predictions by the correlations obtained under relatively low velocity and great discrepancies have been found. A new correlation for the pressure drop through metal foams under high velocity was presented. The effect of the boundary condition on the heat transfer performance was addressed by the comparison of Nusselt number obtained in the present study with that obtained under constant heat flux boundary condition in the published investigation. It was found that the Nusselt number obtained under convective boundary condition is much lower than that obtained under constant heat flux boundary condition. A new correlation for Nusselt number under convective boundary condition was developed. (C) 2016 Elsevier Ltd. All rights reserved.