화학공학소재연구정보센터
Bioresource Technology, Vol.218, 77-83, 2016
Polymer/biomass-derived biochar for use as a sorbent and electron transfer mediator in environmental applications
Co-pyrolysis of polymer and biomass wastes was investigated as a novel method for waste treatment and synthesis of enhanced biochar. Co-pyrolysis of rice straw (RS) with polypropylene (PP), polyethylene (PE) or polystyrene (PS) increased the carbon content, cation exchange capacity (CEC), surface area and pH of the biochar. As a result, the sorption of 2,4-dinitrotoluene (DNT) and Pb to polymer/RS-derived biochar was markedly enhanced. The increased aromaticity and hydrophobicity may be responsible for enhancing the DNT sorption to the polymer/RS-derived biochar. In contrast, increasing CEC, higher pH, and the newly developed surface area may account for the enhancement in Pb sorption. The addition of polymer to RS did not significantly change the catalytic role of biochar during the reduction of DNT by dithiothreitol. Our results suggest that co-pyrolysis of RS and polymer can improve the biochar properties to enhance the sorption of DNT and Pb. (C) 2016 Elsevier Ltd. All rights reserved.