화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.479, No.1, 80-85, 2016
Heme oxygenase-1-mediated apoptosis under cadmium-induced oxidative stress is regulated by autophagy, which is sensitized by tumor suppressor p53
Heme oxygenase-1 (HO-1) is a stress-inducible cytoprotective enzyme. It is often overexpressed in different types of cancers and promotes cell survival. However, the role of HO-1 and the underlying molecular mechanism of cadmium (Cd)-induced oxidative stress in cancer cells remain undefined. Here we show that the role of HO-1 under Cd-induced oxidative stress is dependent upon autophagy, which is sensitized by the tumor suppressor p53. The sensitivity to Cd was 3.5- and 14-fold higher in p53-expressing YD8 and H460 cells than in p53-null YD1OB and H1299 cells, respectively. The levels of p53 in YD8 and H460 cells decreased in a Cd concentration-dependent manner, which was inhibited by pretreatment with N-acetylcysteine. In both cell lines, Cd exposure resulted in caspase-3-mediated PARP-1 cleavage and the induction of CHOP, LC3-II, and HO-1, which were limited in YD10B and H1299 cells exposed to high concentrations of Cd. Cd exposure to p53-overexpressing YD1OB cells enhanced Cd-induced HO-1 and LC3-II levels, whereas genetic knockdown of p53 in YD8 cells resulted in the suppression of Cd-induced levels of HO-1 and LO-II, indicating that p53 is required in the sensing of HO-1 and induction of autophagy. The inhibition of autophagy using small interfering RNA (siRNA) for the autophagy-related gene atg5 enhanced HO-1, CHOP, and PARP-1 cleavage induced by Cd. However, transfection with HO-1 siRNA increased Cd-induced LC3-II, and suppressed the expression of CHOP and cleavage of PARP-1. Collectively, the role of HO-1 in apoptosis could be modulated by autophagy, which is sensitized by p53 expression in human cancer cell lines. (C) 2016 Elsevier Inc. All rights reserved.