Applied Surface Science, Vol.390, 320-327, 2016
Cross-linked multilayer-dye films deposited onto silica surfaces with high affinity for pepsin
Cross-linked thin films based on pH-responsive polymers with a specific ligand inside the organic layer are useful materials in separation processes or in fabrication of controlled delivery systems. Herein, we report the step-by-step deposition of polymer multilayers based on poly(ethyleneimine) (PEI), poly(acrylic acid) (PAA) and poly(sodium methacrylate) (PMAA) followed by the Congo red (CR) immobilization onto composite Daisogel silica microparticles and silicon wafers. The non-crosslinked composites were not stable in extreme basic medium (pH = 13), while thermal and chemical cross-linked samples with CR inside were stable over a wide range of pH. The interaction properties of different proteins [pepsin (PEP), lysozyme, trypsin, bovine serum albumin] with modified solid surfaces were followed by potentiometric titrations, UV and AFM measurements. Only the PEP macromolecules were sorbed onto the Daisogel composite microparticles with CR inside the cross-linked multilayer. The maximum sorbed amount was nearly 200 mg PEP/g Daisogel//(PEI/PAA)(4.5) + CR. This high sorbed amount was in accordance with the AFM images, the average high and roughness increased drastically after the sorption of PEP. (C) 2016 Elsevier B.V. All rights reserved.