화학공학소재연구정보센터
Applied Surface Science, Vol.389, 311-315, 2016
Role of the oxidation state of cerium on the ceria surfaces for silicate adsorption
In this study, we have investigated the role of the Ce oxidation state (Ce3+/Ce4+) on the CeO2 surfaces for silicate adsorption. In aqueous medium, the Ce3+ sites lead to the formation of -OH groups at the CeO2 surface through H2O dissociation. Silicate ions can adsorb onto the CeO2 surface through interaction with the -OH groups (-Ce-OH- + -Si-O- <-> -Ce-O-Si- + OH-). As the Ce3+ concentration increased from 19.3 to 27.6%, the surface density of -OH group increased from 0.34 to 0.72 OH/nm(2). To evaluate the adsorption behaviors of silicate ions onto CeO2 NPs, we carried out an adsorption isothermal analysis, and the adsorption isotherm data followed the Freundlich model. The Freundlich constant for the relative adsorption capacity (K-F) and adsorption intensity (1/n) indicated that CeO2 NPs with high Ce3+ concentration show higher adsorption affinity with silicate ions. As a result, we have demonstrated that the Ce oxidation state (Ce3+/Ce4+) on the CeO2 surface can have a significant influence on the silicate adsorption. (C) 2016 Elsevier B.V. All rights reserved.