Applied Surface Science, Vol.387, 128-138, 2016
Preparation and characterization of trihydroxamic acid functionalized carbon materials for the removal of Cu(II) ions from aqueous solution
The main objective of this study is to prepare and characterize two functionalizated carbon materials with enhanced adsorptive properties for Cu(II). Thus, two novel hybrid materials have been prepared by a non-covalent functionalization method based on the adsorption of a pyrimidine-desferrioxamine-B conjugate compound (H4L) on two activated carbons, ACs (labelled Merck and F). The adsorption of H4L on the ACs is pH-dependent and highly irreversible. This is due to strong pi-pi interactions between the arene centers of the ACs and the pyrimidine moiety of H4L. The textural characterization of the AC/H4L hybrids shows large decreases of their surface areas. Thus the values of Merck and F are 1031 and 1426 m(2)/g respectively, while these of Merck/H4L and F/H4L hybrids are 200 and 322 m(2)/g. An important decrease in the micropore volumes is also found, due to the blockage of narrow porosity produced by the adsorption of H4L molecules. The ACs/H4L hybrids show larger adsorption capacities for Cu(II) (0.105(4) and 0.13(2) mmol/g, at pH 2.0, and 0.20(3) and 0.242(9) mmol/g, at pH 5.5, for Merck/H4L and F/H4L, respectively) than those of the ACs (0.024(6) and 0.096(9) mmol/g, at pH 2.0, and 0.10(2) and 0.177(8) mmol/g, at pH 5.5, for Merck and F respectively), which is explained on the basis of the complexing ability of the trihydroxamic acid functions. The desorption of Cu(II) from the ACs/H4L/Cu(II) materials in acid solution allows the regeneration of most active sites (78.5% in the case of Merck/H4L/Cu(II) and 83.0% in the case of F/H4L/Cu(II)). (C) 2016 Elsevier B.V. All rights reserved.
Keywords:Adsorption;Activated carbon hybrid materials;Trihydroxamic acid functions;Cu(II) ion recovery