화학공학소재연구정보센터
Applied Biochemistry and Biotechnology, Vol.180, No.6, 1110-1127, 2016
Simultaneous Biosynthesis of Polyhydroxyalkanoates and Extracellular Polymeric Substance (EPS) from Crude Glycerol from Biodiesel Production by Different Bacterial Strains
Simultaneous synthesis of polyhydroxyalkanoates (PHAs) and polyglutamic acid (PGA) was investigated in cultures of Cupriavidus necator IPT 026, C. necator IPT 027, C. necator IPT 029, and Bacillus megaterium INCQS 425 strains in a medium containing 2.0 % sucrose or crude glycerol from biodiesel (CGB), in an orbital shaker (35 A degrees C, 180 rpm, 72 h). All the strains tested simultaneously produced PHA and PGA in a medium containing CGB. The C. necator IPT026 culture provided higher molecular mass PHA and PGA (1128.55 and 835.56 kDa, respectively). B. megaterium INCQS 425 promoted PGA production (1.90 g L-1) with higher crystalline melting temperature (84.04 A degrees C) and higher initial decomposition temperature (247.10 A degrees C). Furthermore, the latter culture promoted the production of medium- and long-chain PHA (0.78 g L-1) with high crystalline melting temperatures (similar to 170 A degrees C) and high initial decomposition temperature (307.53 A degrees C) and low degree of crystallinity (20.2 %). These characteristics render these PHAs more appropriate and suitable for processes that require high temperatures, such as extrusion, increasing the possibility of industrial applications, especially in the packaging sector.