화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.44, 52-59, December, 2016
Effect of generation growth on photocatalytic activity of nano TiO2-magnetic cored dendrimers
E-mail:
Titanium dioxide (TiO2) nanoparticles were individually grafted on magnetic-cored dendrimers of 0th, 1st, 2nd, and 3rd generations. Dendrimer’s fractal structure makes nano TiO2 functional group disperse well in water, so we can make full use of the surface area of each nanoparticle to improve photocatalysis. Furthermore, nano TiO2 functionalized magnetite-cored dendrimer (nano TiO2-MD) can be easily recycled by an external magnetic field. Synthesized nano TiO2-MDs of various generations were confirmed with scanning electron microscopy, energy dispersive spectroscopy analysis, X-ray diffraction, and Fourier transform-infrared spectroscopy. Pseudo first order reaction rate constants of methyl orange increased with the generation number of nano TiO2-MDs, but photocatalytic activity after five cycles of reuse was inversely proportional to the generation number. Generation growthdirectly increases the number of nano TiO2 functional groups to enhance the photocatalytic activity, but more loss of photocatalytic activity was observed in repeated use of higher generations of nano TiO2-MDs.
  1. Jang JW, Park JW, Thin Solid Films, 520(1), 193 (2011)
  2. Yun DM, Cho HH, Jang JW, Park JW, Water Res., 47, 1858 (2013)
  3. Mizukoshi Y, Ohtsu N, Semboshi S, Masahashi N, Appl. Catal. B: Environ., 91(1-2), 152 (2009)
  4. Guo H, Zheng Z, Chen J, Weng W, Huang M, J. Ind. Eng. Chem., 36, 306 (2016)
  5. Yu JC, Yu J, Ho W, Jiang Z, Zhang L, Chem. Mater., 14, 3808 (2002)
  6. Taoda H, Res. Chem. Intermed., 34, 417 (2008)
  7. Sadeghi-Kiakhani M, Gharanjig K, Arami M, J. Ind. Eng. Chem., 28, 78 (2015)
  8. Kesharwani P, Iyer AK, Drug Discov. Today, 20, 536 (2015)
  9. Kim LJ, Jang JW, Park JW, Appl. Catal. B: Environ., 147, 973 (2014)
  10. Sharma A, Gautam SP, Gupta AK, Bioorg. Med. Chem., 19, 3341 (2011)
  11. Shahbazi A, Younesi H, Badiei A, Chem. Eng. J., 168(2), 505 (2011)
  12. Yen CH, Lien HL, Chung JS, Yeh HD, J. Hazard. Mater., (in press) (2016)
  13. Tsuchido Y, Sakai Y, Aimu K, Hashimoto T, Akiyoshi K, Hayashita T, New J. Chem., 39, 2620 (2015)
  14. Kaastrup K, Sikes H, RSC Adv., 5, 15652 (2015)
  15. Nakanishi Y, Imae T, J. Colloid Interface Sci., 285(1), 158 (2005)
  16. Deng H, Li X, Peng Q, Wang X, Chen J, Li Y, Angew. Chem.-Int. Edit., 117, 2842 (2005)
  17. Chou CM, Lien HL, J. Nanopart. Res., 13, 2099 (2011)
  18. Pan B, Cui D, Sheng Y, Ozkan C, Gao F, He R, Li Q, Xu P, Huang T, Cancer Res., 67, 8156 (2007)
  19. Zhang J, Nosaka Y, J. Phys. Chem. C, 117, 1383 (2013)
  20. Ravellia D, Dondib D, Fagnonia M, Albini A, Chem. Soc. Rev., 38, 1999 (2009)
  21. Chen C, Liu J, Liu P, Yu B, Adv. Chem. Eng. Sci., 1, 9 (2011)
  22. Pan BF, Gao F, Gu HC, J. Colloid Interface Sci., 284(1), 1 (2005)
  23. Gao F, Pan BF, Zheng WM, Ao LM, Gu HC, J. Magn. Magn. Mater., 293, 48 (2005)
  24. Xu Z, Liu Q, Finch J, Appl. Surf. Sci., 120, 269 (1997)
  25. Wapner K, Grundmeier G, Surf. Coat. Technol., 200, 100 (2005)
  26. Li R, Bu J, Korean J. Chem. Eng., 21(1), 98 (2004)
  27. Grayson SK, Frechet JMJ, Chem. Rev., 101(12), 3819 (2001)
  28. Sun HJ, Zhanga S, Percec V, Chem. Soc. Rev., 44, 3900 (2015)
  29. Lombardo D, Mater. Sci. Res. J., 8, 403 (2014)
  30. Sivasubramanian G, Shanmugam C, Parameswaran V, J. Porous Mat., 20, 417 (2013)
  31. Sing KS, Pure Appl. Chem., 57, 603 (1985)
  32. Lee MS, Park SS, Lee GD, Ju CS, Hong SS, Catal. Today, 101(3-4), 283 (2005)
  33. Hurley KR, Ring HL, Etheridge M, Zhang J, Gao Z, Shao Q, Klein ND, Szlag VM, Chung C, Reineke TM, Garwood M, Bischof JC, Haynes CL, Mol. Pharm., 13, 2172 (2016)
  34. Lin YS, Abadeer N, Hurley KR, Haynes CL, J. Am. Chem. Soc., 133(50), 20444 (2011)