Applied Chemistry for Engineering, Vol.27, No.6, 653-658, December, 2016
수열합성법을 이용한 망간 나노와이어 제조 및 이의 전기화학적 특성 연구
Synthesis of MnO2 Nanowires by Hydrothermal Method and their Electrochemical Characteristics
E-mail:,
초록
본 연구에서는 1차원의 MnO2 nanowire를 KMnO4와 MnSO4 전구체 혼합물의 수열합성법(hydrothermal method)을 사용하여 제조할 수 있는 합성법을 개발하였다. 제조된 MnO2 nanowire는 전기화학 반응 동안 전자와 이온전달을 용이하게 할 수 있는 넓은 비표면적과 기공구조를 나타내었다. MnO2 nanowire의 미세구조 및 화학구조를 주사형 전자현미경(SEM), 투과전자현미경(TEM), 광전자분석기(XPS), X-ray 회절분석법(XRD), 비표면적분석장비(BET)를 사용하여 분석하였다. 본 MnO2 nanowire 전극의 전기화학적 특성은 순환전압전류법(cyclic voltammetry)과 정전류 충전-방전법(galvanostatic charge-discharge)을 사용하여 3상 전극 시스템(three-electrode system)에서 분석하였다. MnO2 nanowire 전극은 높은 비정전용량(129 F/g), 고속 충방전(61% retention), 반 영구적인 수명특성(100%)을 나타내었다.
In this work, we developed a synthetic method for preparing one-dimensional MnO2 nanowires through a hydrothermal method using a mixture of KMnO4 and MnSO4 precursors. As-prepared MnO2 nanowires had a high surface area and porous structure, which are beneficial to the fast electron and ion transfer during electrochemical reaction. The microstructure and chemical structure of MnO2 nanowires were characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and Brunauer-Emmett-Teller measurements. The electrochemical properties of MnO2 nanowire electrodes were also investigated using cyclic voltammetry and galvanostatic charge-discharge with a three-electrode system. MnO2 nanowire electrodes showed a high specific capacitance of 129 F/g, a high rate capability of 61% retention, and an excellent cycle life of 100% during 1000 cycles.
- Sternberg A, Bardow A, Energy Environ. Sci., 8, 389 (2015)
- Jeong G, Kim YU, Kim H, Kim YJ, Sohn HJ, Energy Environ. Sci., 4, 1986 (2011)
- Bruijn FD, Green Chem., 7, 132 (2005)
- Yu Z, Tetard L, Zhai L, Thomas J, Energy Environ. Sci., 8, 702 (2015)
- Zhong C, Deng Y, Hu W, Qiao J, Zhang L, Zhang J, Chem. Soc. Rev., 44, 7484 (2015)
- Lee H, Yanilmaz M, Toprakci O, Fu K, Zhang X, Energy Environ. Sci., 7, 3857 (2014)
- Jiang SP, J. Mater. Chem. A, 2, 7637 (2014)
- Beidaghi M, Gogotsi Y, Energy Environ Sci., 7, 867 (2014)
- Zheng Y, Yang Y, Chen S, Yuan Q, Cryst. Eng. Comm., 18, 4218 (2016)
- Lei C, Amini N, Markoulidis F, Wilson P, Tennison S, Lekakou C, J. Mater. Chem. A, 1, 6037 (2013)
- Jeong GH, Lee I, Kang JG, Lee H, Yoon S, Kim SW, RSC Adv., 5, 73119 (2015)
- Senokos E, Reguero V, Palma J, Vilatela JJ, Marcilla R, Nanoscale, 8, 3620 (2016)
- Hsia B, Kim MS, Carraro C, Maboudian R, J. Mater. Chem. A, 1, 10518 (2013)
- Makgopa K, Ejikeme PM, Jafta CJ, Raju K, Zeiger M, Presser V, Ozoemena KI, J. Mater. Chem. A, 3, 3480 (2015)
- Yang M, Hong SB, Choi BG, Phys. Chem. Chem. Phys., 17, 29874 (2015)
- Conte S, Rodriguez-Calero GG, Burkhardt SE, Lowe MA, Abruna HD, RSC Adv., 3, 1957 (2013)
- Rajender B, Palaniappan S, New J. Chem., 39, 5382 (2015)
- Zhou Z, Zhu Y, Wu Z, Lu F, Jing M, Ji X, RSC Adv., 4, 6927 (2014)
- Meher SK, Rao GR, J. Phys. Chem. C, 115, 15646 (2011)
- Huang M, Li F, Dong F, Zhang YX, Zhang LL, J. Mater. Chem. A, 3, 21380 (2015)
- Su XH, Yu L, Cheng G, Zhang HH, Sun M, Zhang XF, Appl. Energy, 153, 94 (2015)
- Ma J, Cheng Q, Pavlinek V, Saha P, Li C, New J. Chem., 37, 722 (2013)
- Wei C, Yu L, Cui C, Lin J, Wei C, Mathews N, Huo F, Sritharan T, Xu Z, Chem. Commun., 50, 7885 (2014)
- Zeng JH, Wang YF, Yang Y, Zhang J, J. Mater. Chem., 20, 10915 (2010)
- Li Q, Wang ZL, Li GR, Guo R, Ding LX, Tong YX, Nano Lett., 12, 3803 (2012)
- Nair RRAS, Ramakrishna S, Subramanian APSKKRV, Kim SNTN, Nair SV, Balakrishnan A, J. Mater. Chem., 22, 20465 (2012)
- Toufiq AM, Wang F, Javed QUA, Li Q, Li Y, Appl. Phys. A-Mater. Sci. Process., 116, 1127 (2014)
- Kim K, Kim MS, Yeu T, Bull. Korean Chem. Soc., 31, 3183 (2010)
- Zhang X, Yang WS, Yang JJ, Evans DG, J. Cryst. Growth, 310(3), 716 (2008)
- Ho CL, Wu MS, J. Phys. Chem. C, 115, 22068 (2011)
- Yang M, Hong SB, Choi BG, J. Electroanal. Chem., 759, 95 (2015)