화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.26, No.10, 556-560, October, 2016
Comparison of Electrical Properties between Sputter Deposited Au and Cu Schottky Contacts to n-type Ge
E-mail:
Using current-voltage (I-V) and capacitance-voltage (C-V) measurements, the electrical properties of Au and Cu Schottky contacts to n-Ge were comparatively investigated. Lower values of barrier height, ideality factor and series resistance were obtained for the Au contact as compared to the Cu contact. The values of capacitance showed strong dependence on the bias voltage and the frequency. The presence of an inversion layer at the interface might reduce the intercept voltage at the voltage axis, lowering the barrier height for C-V measurements, especially at lower frequencies. In addition, a higher interface state density was observed for the Au contact. The generation of sputter deposition-induced defects might occur more severely for the Au contact; these defects affected both the I-V and C-V characteristics.
  1. Shang H, Frank M, Gusev E, Chu J, Bedell S, Guarini K, Jeong M, IBM J. Res. Dev., 50, 377 (2006)
  2. Dimoulas A, Tsipas P, Sotiropoulos A, Evangelou E, Appl. Phys. Lett., 89, 252110 (2006)
  3. Kuzum D, Martens K, Krishnamohan T, Saraswat K, Appl. Phys. Lett., 95, 252101 (2009)
  4. Nishimura T, Kita K, Toriumi A, Appl. Phys. Lett., 91, 123123 (2007)
  5. Zhou Y, Ogawa M, Bao M, Han W, Kawakami R, Wang K, Appl. Phys. Lett., 94, 242104 (2009)
  6. Nishimura T, Kita K, Toriumi A, Appl. Phys. Exp., 1, 051406 (2008)
  7. Tsui B, Kao M, Appl. Phys. Lett., 103, 032104 (2013)
  8. Auret F, Meyer W, Coelho S, Hayes M, Appl. Phys. Lett., 88, 242110 (2006)
  9. Simoen E, Opsomer K, Claeys C, Maex K, Detavernier C, Van Meirhaeghe RL, Clauws P, J. Electrochem. Soc., 154(10), H857 (2007)
  10. Coelho S, Auret F, Rensburg P, Nel J, J. Appl. Phys., 114, 173708 (2013)
  11. Auret F, Coelho S, Rensburg P, Nyamhere C, Meyer W, Mater. Sci. Semicond. Process, 11, 348 (2008)
  12. Michaelson H, J. Appl. Phys., 48, 4729 (1977)
  13. Sze SM, Physics of Semiconductor Devices, 2nd Ed., Wiley, New York (1981).
  14. Sullivan J, Tung R, Pinto M, Graham W, J. Appl. Phys., 70, 7403 (1991)
  15. Cheung S, Cheung N, Appl. Phys. Lett., 49, 85 (1986)
  16. Witczak S, Suehle J, Gaitan M, Solid-State Electron., 35, 345 (1992)
  17. Chattopadhyay P, Raychaudhuri B, Solid-State Electron., 36, 605 (1993)
  18. Green M, Shewchun J, Solid-State Electron., 16, 1141 (1973)
  19. Monch W, J. Vac. Sci. Technol. B, 17(4), 1867 (1999)
  20. Chawanda A, Nel J, Auret F, Mtangi W, Nyamhere C, Diale M, Leach L, J. Korean Phys. Soc., 57, 1970 (2010)
  21. Yao H, Chi D, Li R, Lee S, Kwong D, Appl. Phys. Lett., 89, 242117 (2006)
  22. Auret F, Coelho S, Meyer W, Nyamhere C, Hayes M, Nel J, J. Electron. Mater., 36, 1604 (2007)
  23. Chattopadhyay S, Bera K, Ray K, Bose K, Dentel D, Kubler L, J. Macromol. Sci.-Mater. Electron., 9, 403 (1998)
  24. Mamor M, J. Phys. Condens. Matter, 21, 335802 (2009)
  25. Sun S, Sun Y, Liu Z, Lee D, Peterson S, Pianetta P, Appl. Phys. Lett., 88, 021903 (2006)
  26. Li XF, Li AD, Liu XJ, Gong Y, Chen XC, Li H, Wu D, Appl. Surf. Sci., 257(10), 4589 (2011)
  27. Xue B, Chang H, Sun B, Wang S, Liu H, Chin. Phys. Lett., 29, 046801 (2012)